Nanostructured Ti–Ni Shape Memory Alloys Produced by Thermomechanical Processing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06

AUTHORS

S. Prokoshkin, V. Brailovski, K. Inaekyan, V. Demers, A. Kreitcberg

ABSTRACT

This article describes the evolution of structural and functional properties of Ti–Ni SMA as a result of thermomechanical processing combining cold/warm deformation ranging from moderate to severe and post-deformation annealing at different temperatures. This study results in the development of an original thermomechanical processing route capable of producing truly nanocrystalline Ti–Ni SMA with grain size ranging from 40 to 80 nm. These structures are mainly a result of crystallization at moderate temperatures of the alloys subjected to severe “amorphizing” cold rolling. A clear demonstration is made that the nanocrystalline structures are the most favorable structures, compared to their recrystallized and polygonized counterparts, for the practical application of Ti–Ni alloys from the viewpoint of their static and dynamic functional characteristics. Despite the fact that these results were obtained on relatively small-sized samples (0.2…0.7 mm thick, 3…5 mm wide cold/warm-rolled ribbons), they bring a clear understanding of the underlying processing-structure-properties interrelations, and, therefore, pave the way for the oncoming production of large-size nanocrystalline Ti–Ni SMA with a radically improved combination of functional characteristics. More... »

PAGES

191-203

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-015-0026-z

DOI

http://dx.doi.org/10.1007/s40830-015-0026-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041190506


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISIS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokoshkin", 
        "givenName": "S.", 
        "id": "sg:person.015352705675.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Sup\u00e9rieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "Ecole de Technologie Sup\u00e9rieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brailovski", 
        "givenName": "V.", 
        "id": "sg:person.0756023647.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Sup\u00e9rieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "Ecole de Technologie Sup\u00e9rieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inaekyan", 
        "givenName": "K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Sup\u00e9rieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "Ecole de Technologie Sup\u00e9rieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demers", 
        "givenName": "V.", 
        "id": "sg:person.013176401260.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013176401260.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Sup\u00e9rieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "Ecole de Technologie Sup\u00e9rieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreitcberg", 
        "givenName": "A.", 
        "id": "sg:person.012534450355.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.1990.1414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011949747", 
          "https://doi.org/10.1557/jmr.1990.1414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13632-013-0114-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049519448", 
          "https://doi.org/10.1007/s13632-013-0114-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jmsc.0000011492.88523.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041954781", 
          "https://doi.org/10.1023/b:jmsc.0000011492.88523.d3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/419887a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043862206", 
          "https://doi.org/10.1038/419887a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x10090127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032283929", 
          "https://doi.org/10.1134/s0031918x10090127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11041-005-0049-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047647909", 
          "https://doi.org/10.1007/s11041-005-0049-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011475496", 
          "https://doi.org/10.1007/bf02644447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x14090087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045787997", 
          "https://doi.org/10.1134/s0031918x14090087"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "This article describes the evolution of structural and functional properties of Ti\u2013Ni SMA as a result of thermomechanical processing combining cold/warm deformation ranging from moderate to severe and post-deformation annealing at different temperatures. This study results in the development of an original thermomechanical processing route capable of producing truly nanocrystalline Ti\u2013Ni SMA with grain size ranging from 40 to 80\u00a0nm. These structures are mainly a result of crystallization at moderate temperatures of the alloys subjected to severe \u201camorphizing\u201d cold rolling. A clear demonstration is made that the nanocrystalline structures are the most favorable structures, compared to their recrystallized and polygonized counterparts, for the practical application of Ti\u2013Ni alloys from the viewpoint of their static and dynamic functional characteristics. Despite the fact that these results were obtained on relatively small-sized samples (0.2\u20260.7\u00a0mm thick, 3\u20265\u00a0mm wide cold/warm-rolled ribbons), they bring a clear understanding of the underlying processing-structure-properties interrelations, and, therefore, pave the way for the oncoming production of large-size nanocrystalline Ti\u2013Ni SMA with a radically improved combination of functional characteristics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40830-015-0026-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "Ti\u2013Ni SMA", 
      "thermomechanical processing", 
      "Ti-Ni shape memory alloy", 
      "post-deformation annealing", 
      "thermomechanical processing route", 
      "shape memory alloy", 
      "warm deformation", 
      "cold rolling", 
      "nanocrystalline structure", 
      "processing route", 
      "memory alloy", 
      "Ti\u2013Ni", 
      "grain size", 
      "alloy", 
      "small-sized samples", 
      "different temperatures", 
      "moderate temperatures", 
      "result of crystallization", 
      "practical applications", 
      "temperature", 
      "rolling", 
      "favorable structure", 
      "annealing", 
      "deformation", 
      "processing", 
      "structure", 
      "functional properties", 
      "characteristics", 
      "properties", 
      "results", 
      "applications", 
      "crystallization", 
      "SMA", 
      "size", 
      "route", 
      "functional characteristics", 
      "demonstration", 
      "combination", 
      "evolution", 
      "production", 
      "viewpoint", 
      "clear understanding", 
      "samples", 
      "clear demonstration", 
      "counterparts", 
      "development", 
      "way", 
      "study", 
      "fact", 
      "interrelations", 
      "understanding", 
      "article"
    ], 
    "name": "Nanostructured Ti\u2013Ni Shape Memory Alloys Produced by Thermomechanical Processing", 
    "pagination": "191-203", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041190506"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-015-0026-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-015-0026-z", 
      "https://app.dimensions.ai/details/publication/pub.1041190506"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_674.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40830-015-0026-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-015-0026-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-015-0026-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-015-0026-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-015-0026-z'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      85 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-015-0026-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc84d7a62ac4f44888fb6632827f0c054
4 schema:citation sg:pub.10.1007/bf02644447
5 sg:pub.10.1007/s11041-005-0049-8
6 sg:pub.10.1007/s13632-013-0114-4
7 sg:pub.10.1023/b:jmsc.0000011492.88523.d3
8 sg:pub.10.1038/419887a
9 sg:pub.10.1134/s0031918x10090127
10 sg:pub.10.1134/s0031918x14090087
11 sg:pub.10.1557/jmr.1990.1414
12 schema:datePublished 2015-06
13 schema:datePublishedReg 2015-06-01
14 schema:description This article describes the evolution of structural and functional properties of Ti–Ni SMA as a result of thermomechanical processing combining cold/warm deformation ranging from moderate to severe and post-deformation annealing at different temperatures. This study results in the development of an original thermomechanical processing route capable of producing truly nanocrystalline Ti–Ni SMA with grain size ranging from 40 to 80 nm. These structures are mainly a result of crystallization at moderate temperatures of the alloys subjected to severe “amorphizing” cold rolling. A clear demonstration is made that the nanocrystalline structures are the most favorable structures, compared to their recrystallized and polygonized counterparts, for the practical application of Ti–Ni alloys from the viewpoint of their static and dynamic functional characteristics. Despite the fact that these results were obtained on relatively small-sized samples (0.2…0.7 mm thick, 3…5 mm wide cold/warm-rolled ribbons), they bring a clear understanding of the underlying processing-structure-properties interrelations, and, therefore, pave the way for the oncoming production of large-size nanocrystalline Ti–Ni SMA with a radically improved combination of functional characteristics.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N570b2608690749f59680f9575394335f
19 N79be85a0c737497e85964f231f8bdcdb
20 sg:journal.1136269
21 schema:keywords SMA
22 Ti-Ni shape memory alloy
23 Ti–Ni
24 Ti–Ni SMA
25 alloy
26 annealing
27 applications
28 article
29 characteristics
30 clear demonstration
31 clear understanding
32 cold rolling
33 combination
34 counterparts
35 crystallization
36 deformation
37 demonstration
38 development
39 different temperatures
40 evolution
41 fact
42 favorable structure
43 functional characteristics
44 functional properties
45 grain size
46 interrelations
47 memory alloy
48 moderate temperatures
49 nanocrystalline structure
50 post-deformation annealing
51 practical applications
52 processing
53 processing route
54 production
55 properties
56 result of crystallization
57 results
58 rolling
59 route
60 samples
61 shape memory alloy
62 size
63 small-sized samples
64 structure
65 study
66 temperature
67 thermomechanical processing
68 thermomechanical processing route
69 understanding
70 viewpoint
71 warm deformation
72 way
73 schema:name Nanostructured Ti–Ni Shape Memory Alloys Produced by Thermomechanical Processing
74 schema:pagination 191-203
75 schema:productId N7a1e40f864bd4e76a42920d8a9fad941
76 N9cfdb0f01cce4b08b979d640c572e5e6
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041190506
78 https://doi.org/10.1007/s40830-015-0026-z
79 schema:sdDatePublished 2022-05-10T10:12
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N2f23fddddcc54bdb9fb9cc721c39d587
82 schema:url https://doi.org/10.1007/s40830-015-0026-z
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N01649937b61249579e4f65038df86d2e rdf:first N2401250ce6f142bd8a373098ab9e3e02
87 rdf:rest Nb2d52e8891e142ceae9b0d5f8b420be3
88 N2401250ce6f142bd8a373098ab9e3e02 schema:affiliation grid-institutes:grid.459234.d
89 schema:familyName Inaekyan
90 schema:givenName K.
91 rdf:type schema:Person
92 N2f23fddddcc54bdb9fb9cc721c39d587 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N570b2608690749f59680f9575394335f schema:volumeNumber 1
95 rdf:type schema:PublicationVolume
96 N79be85a0c737497e85964f231f8bdcdb schema:issueNumber 2
97 rdf:type schema:PublicationIssue
98 N7a1e40f864bd4e76a42920d8a9fad941 schema:name doi
99 schema:value 10.1007/s40830-015-0026-z
100 rdf:type schema:PropertyValue
101 N9cfdb0f01cce4b08b979d640c572e5e6 schema:name dimensions_id
102 schema:value pub.1041190506
103 rdf:type schema:PropertyValue
104 Na35f5f6ee7da4062bc9283c89b5a1ffa rdf:first sg:person.0756023647.41
105 rdf:rest N01649937b61249579e4f65038df86d2e
106 Nb2d52e8891e142ceae9b0d5f8b420be3 rdf:first sg:person.013176401260.01
107 rdf:rest Nf788efcda8bf4ab98a3cf0c0c44efc39
108 Nc84d7a62ac4f44888fb6632827f0c054 rdf:first sg:person.015352705675.83
109 rdf:rest Na35f5f6ee7da4062bc9283c89b5a1ffa
110 Nf788efcda8bf4ab98a3cf0c0c44efc39 rdf:first sg:person.012534450355.23
111 rdf:rest rdf:nil
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
116 schema:name Materials Engineering
117 rdf:type schema:DefinedTerm
118 sg:journal.1136269 schema:issn 2199-384X
119 2199-3858
120 schema:name Shape Memory and Superelasticity
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.012534450355.23 schema:affiliation grid-institutes:grid.459234.d
124 schema:familyName Kreitcberg
125 schema:givenName A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23
127 rdf:type schema:Person
128 sg:person.013176401260.01 schema:affiliation grid-institutes:grid.459234.d
129 schema:familyName Demers
130 schema:givenName V.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013176401260.01
132 rdf:type schema:Person
133 sg:person.015352705675.83 schema:affiliation grid-institutes:grid.35043.31
134 schema:familyName Prokoshkin
135 schema:givenName S.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83
137 rdf:type schema:Person
138 sg:person.0756023647.41 schema:affiliation grid-institutes:grid.459234.d
139 schema:familyName Brailovski
140 schema:givenName V.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41
142 rdf:type schema:Person
143 sg:pub.10.1007/bf02644447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011475496
144 https://doi.org/10.1007/bf02644447
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11041-005-0049-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047647909
147 https://doi.org/10.1007/s11041-005-0049-8
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s13632-013-0114-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049519448
150 https://doi.org/10.1007/s13632-013-0114-4
151 rdf:type schema:CreativeWork
152 sg:pub.10.1023/b:jmsc.0000011492.88523.d3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041954781
153 https://doi.org/10.1023/b:jmsc.0000011492.88523.d3
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/419887a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043862206
156 https://doi.org/10.1038/419887a
157 rdf:type schema:CreativeWork
158 sg:pub.10.1134/s0031918x10090127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283929
159 https://doi.org/10.1134/s0031918x10090127
160 rdf:type schema:CreativeWork
161 sg:pub.10.1134/s0031918x14090087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045787997
162 https://doi.org/10.1134/s0031918x14090087
163 rdf:type schema:CreativeWork
164 sg:pub.10.1557/jmr.1990.1414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949747
165 https://doi.org/10.1557/jmr.1990.1414
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.35043.31 schema:alternateName National University of Science and Technology “MISIS”, 4 Leninskiy Prospect, 119049, Moscow, Russia
168 schema:name National University of Science and Technology “MISIS”, 4 Leninskiy Prospect, 119049, Moscow, Russia
169 rdf:type schema:Organization
170 grid-institutes:grid.459234.d schema:alternateName Ecole de Technologie Supérieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada
171 schema:name Ecole de Technologie Supérieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...