Flexible, Porous, and Metal–Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Qijian Niu, Binling Chen, Junxia Guo, Jun Nie, Xindong Guo, Guiping Ma

ABSTRACT

Doping and porosity generation were completed simultaneously.Metal–heteroatom-doped carbon nanofibers are flexible, porous, and well dispersed.Results include excellent oxygen reduction reaction and enhanced Zn–air battery performance. Doping and porosity generation were completed simultaneously. Metal–heteroatom-doped carbon nanofibers are flexible, porous, and well dispersed. Results include excellent oxygen reduction reaction and enhanced Zn–air battery performance. Developing an efficient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal–heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers (Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 °C (Zn/Co–N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction (ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential (0.98 V vs. RHE), half-wave potential (0.89 V vs. RHE), and limiting current density (− 5.26 mA cm−2). In addition, we tested the suitability and durability of Zn/Co–N@PCNFs-800 as the oxygen cathode for a rechargeable Zn–air battery. The prepared Zn–air batteries exhibited a higher power density (83.5 mW cm−2), a higher specific capacity (640.3 mAh g−1), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40820-019-0238-4

DOI

http://dx.doi.org/10.1007/s40820-019-0238-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111541424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology", 
          "id": "https://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "Key Laboratory of carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China", 
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Qijian", 
        "id": "sg:person.011772274225.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011772274225.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Binling", 
        "id": "sg:person.01013270357.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013270357.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology", 
          "id": "https://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "Key Laboratory of carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China", 
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Junxia", 
        "id": "sg:person.013365235225.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365235225.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology", 
          "id": "https://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "Key Laboratory of carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China", 
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nie", 
        "givenName": "Jun", 
        "id": "sg:person.01300316306.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300316306.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology", 
          "id": "https://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "Key Laboratory of carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China", 
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Xindong", 
        "id": "sg:person.010445446425.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445446425.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology", 
          "id": "https://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "Key Laboratory of carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China", 
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Guiping", 
        "id": "sg:person.01216737001.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216737001.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10853-013-7705-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001480495", 
          "https://doi.org/10.1007/s10853-013-7705-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ta09193h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003027267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ta05829a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008836709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja7106146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008996698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja7106146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008996698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009197158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2016.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201601979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014511318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0ee00558d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ta02984d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021855943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mattod.2015.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022049974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.5b00462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025062105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201601301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025582192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad0832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029332674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201502315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029389423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201470122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035094682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201600979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038601344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ta04330a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041385250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja5084128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043292883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045741773", 
          "https://doi.org/10.1038/nature11475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acscatal.6b01222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046383765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201604556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047239180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2014.06.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047302494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201506112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047314175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3tc31680g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049967074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr5003563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050660828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201505086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050990359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b11786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055129162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.6b05046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055875683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn501783n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056226049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201606497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084007095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201700041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084007121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40820-017-0144-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040795", 
          "https://doi.org/10.1007/s40820-017-0144-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40820-017-0144-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040795", 
          "https://doi.org/10.1007/s40820-017-0144-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201606534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085051324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ta02999c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085410105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201606459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085414862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ta02215h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085725513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.7b06427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086038433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nh00058h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086121411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2017.06.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090385062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-05636-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090553735", 
          "https://doi.org/10.1038/s41598-017-05636-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7dt01904a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090658162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2017.07.156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090910198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nr04349j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091159346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ta05936a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091307309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40820-017-0157-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091925210", 
          "https://doi.org/10.1007/s40820-017-0157-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2017.09.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091977313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2017.10.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092180401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2017.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095858486", 
          "https://doi.org/10.1038/natrevmats.2017.75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b07473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099732914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b07473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099732914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b07473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099732914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2017.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100111100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2018.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107900728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2018.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107900728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2018.11.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109921677"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Doping and porosity generation were completed simultaneously.Metal\u2013heteroatom-doped carbon nanofibers are flexible, porous, and well dispersed.Results include excellent oxygen reduction reaction and enhanced Zn\u2013air battery performance. Doping and porosity generation were completed simultaneously. Metal\u2013heteroatom-doped carbon nanofibers are flexible, porous, and well dispersed. Results include excellent oxygen reduction reaction and enhanced Zn\u2013air battery performance. Developing an efficient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal\u2013air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal\u2013heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers (Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 \u00b0C (Zn/Co\u2013N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction (ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential (0.98 V vs. RHE), half-wave potential (0.89 V vs. RHE), and limiting current density (\u2212 5.26 mA cm\u22122). In addition, we tested the suitability and durability of Zn/Co\u2013N@PCNFs-800 as the oxygen cathode for a rechargeable Zn\u2013air battery. The prepared Zn\u2013air batteries exhibited a higher power density (83.5 mW cm\u22122), a higher specific capacity (640.3 mAh g\u22121), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40820-019-0238-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136349", 
        "issn": [
          "2311-6706", 
          "2150-5551"
        ], 
        "name": "Nano-Micro Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Flexible, Porous, and Metal\u2013Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn\u2013Air Battery", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "42146c8d45ae51e78ac77b069c39979854da754b8e3bbf0d1e8875ec1b3b3da2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40820-019-0238-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111541424"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40820-019-0238-4", 
      "https://app.dimensions.ai/details/publication/pub.1111541424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40820-019-0238-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40820-019-0238-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40820-019-0238-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40820-019-0238-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40820-019-0238-4'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      79 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40820-019-0238-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N115fca390f454856ba5605da471239ec
4 schema:citation sg:pub.10.1007/s10853-013-7705-y
5 sg:pub.10.1007/s40820-017-0144-6
6 sg:pub.10.1007/s40820-017-0157-1
7 sg:pub.10.1038/natrevmats.2017.75
8 sg:pub.10.1038/nature11475
9 sg:pub.10.1038/s41598-017-05636-y
10 https://doi.org/10.1002/adfm.201606497
11 https://doi.org/10.1002/adfm.201700041
12 https://doi.org/10.1002/adma.201502315
13 https://doi.org/10.1002/adma.201505086
14 https://doi.org/10.1002/adma.201506112
15 https://doi.org/10.1002/adma.201600979
16 https://doi.org/10.1002/adma.201604556
17 https://doi.org/10.1002/adma.201606459
18 https://doi.org/10.1002/adma.201606534
19 https://doi.org/10.1002/aenm.201601301
20 https://doi.org/10.1002/aenm.201601979
21 https://doi.org/10.1002/smll.201470122
22 https://doi.org/10.1016/j.apcatb.2016.12.016
23 https://doi.org/10.1016/j.apcatb.2018.11.039
24 https://doi.org/10.1016/j.carbon.2016.12.016
25 https://doi.org/10.1016/j.cej.2017.07.156
26 https://doi.org/10.1016/j.electacta.2014.06.120
27 https://doi.org/10.1016/j.electacta.2017.09.125
28 https://doi.org/10.1016/j.electacta.2017.10.055
29 https://doi.org/10.1016/j.mattod.2015.11.010
30 https://doi.org/10.1016/j.nanoen.2017.06.050
31 https://doi.org/10.1016/j.nanoen.2018.10.029
32 https://doi.org/10.1016/j.progpolymsci.2017.12.003
33 https://doi.org/10.1021/acs.chemrev.5b00462
34 https://doi.org/10.1021/acsami.5b11786
35 https://doi.org/10.1021/acsami.7b06427
36 https://doi.org/10.1021/acscatal.6b01222
37 https://doi.org/10.1021/acsnano.7b07473
38 https://doi.org/10.1021/cr5003563
39 https://doi.org/10.1021/ja5084128
40 https://doi.org/10.1021/ja7106146
41 https://doi.org/10.1021/jacs.6b05046
42 https://doi.org/10.1021/nn501783n
43 https://doi.org/10.1039/c0ee00558d
44 https://doi.org/10.1039/c3tc31680g
45 https://doi.org/10.1039/c4ta02984d
46 https://doi.org/10.1039/c5ta04330a
47 https://doi.org/10.1039/c6ta05829a
48 https://doi.org/10.1039/c6ta09193h
49 https://doi.org/10.1039/c7dt01904a
50 https://doi.org/10.1039/c7nh00058h
51 https://doi.org/10.1039/c7nr04349j
52 https://doi.org/10.1039/c7ta02215h
53 https://doi.org/10.1039/c7ta02999c
54 https://doi.org/10.1039/c7ta05936a
55 https://doi.org/10.1126/science.aad0832
56 schema:datePublished 2019-03
57 schema:datePublishedReg 2019-03-01
58 schema:description Doping and porosity generation were completed simultaneously.Metal–heteroatom-doped carbon nanofibers are flexible, porous, and well dispersed.Results include excellent oxygen reduction reaction and enhanced Zn–air battery performance. Doping and porosity generation were completed simultaneously. Metal–heteroatom-doped carbon nanofibers are flexible, porous, and well dispersed. Results include excellent oxygen reduction reaction and enhanced Zn–air battery performance. Developing an efficient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal–heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers (Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 °C (Zn/Co–N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction (ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential (0.98 V vs. RHE), half-wave potential (0.89 V vs. RHE), and limiting current density (− 5.26 mA cm−2). In addition, we tested the suitability and durability of Zn/Co–N@PCNFs-800 as the oxygen cathode for a rechargeable Zn–air battery. The prepared Zn–air batteries exhibited a higher power density (83.5 mW cm−2), a higher specific capacity (640.3 mAh g−1), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N882324007e8443d7badb93258a7a0309
63 N8ae98c8ee5684e98aa4e8c84b5fa82eb
64 sg:journal.1136349
65 schema:name Flexible, Porous, and Metal–Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery
66 schema:pagination 8
67 schema:productId N260f897822ef40e8ba1652918f223798
68 N77509ff66e9e4913a4669bb9beee09e4
69 Ne6e37d80e6ed4b4b8f6b1338ea852565
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111541424
71 https://doi.org/10.1007/s40820-019-0238-4
72 schema:sdDatePublished 2019-04-11T13:56
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N533359a2962d4e8fafc262dc2d1d8f35
75 schema:url https://link.springer.com/10.1007%2Fs40820-019-0238-4
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N115fca390f454856ba5605da471239ec rdf:first sg:person.011772274225.97
80 rdf:rest N1c6d5b7ba6c44701ad2bfd82e14578c0
81 N1c6d5b7ba6c44701ad2bfd82e14578c0 rdf:first sg:person.01013270357.98
82 rdf:rest N497298e017ea415899987298c491cd37
83 N25c525e61e55498e9f3bc3ae32966dd3 rdf:first sg:person.010445446425.97
84 rdf:rest Nd4cfc6e6dd7344b192b3aea35b6e90cd
85 N260f897822ef40e8ba1652918f223798 schema:name doi
86 schema:value 10.1007/s40820-019-0238-4
87 rdf:type schema:PropertyValue
88 N497298e017ea415899987298c491cd37 rdf:first sg:person.013365235225.19
89 rdf:rest Na75737aa399c4fcb9a027de5cd93890e
90 N533359a2962d4e8fafc262dc2d1d8f35 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N77509ff66e9e4913a4669bb9beee09e4 schema:name dimensions_id
93 schema:value pub.1111541424
94 rdf:type schema:PropertyValue
95 N882324007e8443d7badb93258a7a0309 schema:volumeNumber 11
96 rdf:type schema:PublicationVolume
97 N8ae98c8ee5684e98aa4e8c84b5fa82eb schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 Na75737aa399c4fcb9a027de5cd93890e rdf:first sg:person.01300316306.40
100 rdf:rest N25c525e61e55498e9f3bc3ae32966dd3
101 Nd4cfc6e6dd7344b192b3aea35b6e90cd rdf:first sg:person.01216737001.12
102 rdf:rest rdf:nil
103 Ne6e37d80e6ed4b4b8f6b1338ea852565 schema:name readcube_id
104 schema:value 42146c8d45ae51e78ac77b069c39979854da754b8e3bbf0d1e8875ec1b3b3da2
105 rdf:type schema:PropertyValue
106 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
107 schema:name Chemical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Chemistry (incl. Structural)
111 rdf:type schema:DefinedTerm
112 sg:journal.1136349 schema:issn 2150-5551
113 2311-6706
114 schema:name Nano-Micro Letters
115 rdf:type schema:Periodical
116 sg:person.01013270357.98 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
117 schema:familyName Chen
118 schema:givenName Binling
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013270357.98
120 rdf:type schema:Person
121 sg:person.010445446425.97 schema:affiliation https://www.grid.ac/institutes/grid.48166.3d
122 schema:familyName Guo
123 schema:givenName Xindong
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445446425.97
125 rdf:type schema:Person
126 sg:person.011772274225.97 schema:affiliation https://www.grid.ac/institutes/grid.48166.3d
127 schema:familyName Niu
128 schema:givenName Qijian
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011772274225.97
130 rdf:type schema:Person
131 sg:person.01216737001.12 schema:affiliation https://www.grid.ac/institutes/grid.48166.3d
132 schema:familyName Ma
133 schema:givenName Guiping
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216737001.12
135 rdf:type schema:Person
136 sg:person.01300316306.40 schema:affiliation https://www.grid.ac/institutes/grid.48166.3d
137 schema:familyName Nie
138 schema:givenName Jun
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300316306.40
140 rdf:type schema:Person
141 sg:person.013365235225.19 schema:affiliation https://www.grid.ac/institutes/grid.48166.3d
142 schema:familyName Guo
143 schema:givenName Junxia
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365235225.19
145 rdf:type schema:Person
146 sg:pub.10.1007/s10853-013-7705-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001480495
147 https://doi.org/10.1007/s10853-013-7705-y
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s40820-017-0144-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084040795
150 https://doi.org/10.1007/s40820-017-0144-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s40820-017-0157-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091925210
153 https://doi.org/10.1007/s40820-017-0157-1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/natrevmats.2017.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095858486
156 https://doi.org/10.1038/natrevmats.2017.75
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature11475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045741773
159 https://doi.org/10.1038/nature11475
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/s41598-017-05636-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090553735
162 https://doi.org/10.1038/s41598-017-05636-y
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/adfm.201606497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084007095
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/adfm.201700041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084007121
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/adma.201502315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029389423
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/adma.201505086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050990359
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/adma.201506112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047314175
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/adma.201600979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038601344
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/adma.201604556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047239180
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/adma.201606459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085414862
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/adma.201606534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085051324
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/aenm.201601301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025582192
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/aenm.201601979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014511318
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/smll.201470122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035094682
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.apcatb.2016.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065233
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.apcatb.2018.11.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109921677
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.carbon.2016.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009197158
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.cej.2017.07.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090910198
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.electacta.2014.06.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047302494
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.electacta.2017.09.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091977313
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.electacta.2017.10.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092180401
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.mattod.2015.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022049974
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.nanoen.2017.06.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090385062
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.nanoen.2018.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107900728
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.progpolymsci.2017.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100111100
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/acs.chemrev.5b00462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025062105
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/acsami.5b11786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055129162
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/acsami.7b06427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086038433
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/acscatal.6b01222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046383765
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/acsnano.7b07473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099732914
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/cr5003563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050660828
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/ja5084128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043292883
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/ja7106146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008996698
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/jacs.6b05046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055875683
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1021/nn501783n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056226049
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1039/c0ee00558d schema:sameAs https://app.dimensions.ai/details/publication/pub.1020688895
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1039/c3tc31680g schema:sameAs https://app.dimensions.ai/details/publication/pub.1049967074
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1039/c4ta02984d schema:sameAs https://app.dimensions.ai/details/publication/pub.1021855943
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1039/c5ta04330a schema:sameAs https://app.dimensions.ai/details/publication/pub.1041385250
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1039/c6ta05829a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008836709
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1039/c6ta09193h schema:sameAs https://app.dimensions.ai/details/publication/pub.1003027267
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1039/c7dt01904a schema:sameAs https://app.dimensions.ai/details/publication/pub.1090658162
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1039/c7nh00058h schema:sameAs https://app.dimensions.ai/details/publication/pub.1086121411
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1039/c7nr04349j schema:sameAs https://app.dimensions.ai/details/publication/pub.1091159346
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1039/c7ta02215h schema:sameAs https://app.dimensions.ai/details/publication/pub.1085725513
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1039/c7ta02999c schema:sameAs https://app.dimensions.ai/details/publication/pub.1085410105
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1039/c7ta05936a schema:sameAs https://app.dimensions.ai/details/publication/pub.1091307309
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1126/science.aad0832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029332674
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.48166.3d schema:alternateName Beijing University of Chemical Technology
257 schema:name Key Laboratory of carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, 100029, Beijing, People’s Republic of China
258 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, People’s Republic of China
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.8391.3 schema:alternateName University of Exeter
261 schema:name College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...