Analysis of Time-Fractional ϕ4-Equation with Singular and Non-Singular Kernels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-02

AUTHORS

Fazlur Rahman, Amir Ali, Sayed Saifullah

ABSTRACT

In this article, we investigate the nonlinear time-fractional ϕ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ^{4}$$\end{document}-equation under Caputo, Caputo-Fabrizio, and Atangana-Baleanu in Caputo’s sense. The modified double Laplace decomposition method is applied to study the proposed model under the aforementioned operators. The suggested approach is the combination of double Laplace and decomposition methods. It is observed that, the obtained series solutions of the system with considered fractional derivatives converges to the exact solution. A numerical example is presented with corresponding numerical simulations to demonstrate and validate the efficiency of the proposed technique. The error analysis of the considered equation with all considered operators is presented in the form of the tables. The physical behaviors of the obtained solutions with different fractional orders are discussed in detail. More... »

PAGES

192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40819-021-01128-w

DOI

http://dx.doi.org/10.1007/s40819-021-01128-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140863324


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Malakand Chakdara Dir(L) KP Pakistan, Chakdara, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440567.4", 
          "name": [
            "Department of Mathematics, University of Malakand Chakdara Dir(L) KP Pakistan, Chakdara, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahman", 
        "givenName": "Fazlur", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Malakand Chakdara Dir(L) KP Pakistan, Chakdara, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440567.4", 
          "name": [
            "Department of Mathematics, University of Malakand Chakdara Dir(L) KP Pakistan, Chakdara, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali", 
        "givenName": "Amir", 
        "id": "sg:person.012721760120.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721760120.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Malakand Chakdara Dir(L) KP Pakistan, Chakdara, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440567.4", 
          "name": [
            "Department of Mathematics, University of Malakand Chakdara Dir(L) KP Pakistan, Chakdara, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saifullah", 
        "givenName": "Sayed", 
        "id": "sg:person.014077213200.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077213200.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13662-017-1401-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092346841", 
          "https://doi.org/10.1186/s13662-017-1401-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-020-03175-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134421580", 
          "https://doi.org/10.1186/s13662-020-03175-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1515/fca-2021-0037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139069830", 
          "https://doi.org/10.1515/fca-2021-0037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11804-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100161803", 
          "https://doi.org/10.1140/epjp/i2018-11804-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81291-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050849745", 
          "https://doi.org/10.1007/978-3-642-81291-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11950-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101303448", 
          "https://doi.org/10.1140/epjp/i2018-11950-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2012-187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051180991", 
          "https://doi.org/10.1186/1687-1847-2012-187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8289-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029030517", 
          "https://doi.org/10.1007/978-94-015-8289-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-02", 
    "datePublishedReg": "2021-09-02", 
    "description": "In this article, we investigate the nonlinear time-fractional \u03d54\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\phi ^{4}$$\\end{document}-equation under Caputo, Caputo-Fabrizio, and Atangana-Baleanu in Caputo\u2019s sense. The modified double Laplace decomposition method is applied to study the proposed model under the aforementioned operators. The suggested approach is the combination of double Laplace and decomposition methods. It is observed that, the obtained series solutions of the system with considered fractional derivatives converges to the exact solution. A numerical example is presented with corresponding numerical simulations to demonstrate and validate the efficiency of the proposed technique. The error analysis of the considered equation with all considered operators is presented in the form of the tables. The physical behaviors of the obtained solutions with different fractional orders are discussed in detail.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40819-021-01128-w", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135865", 
        "issn": [
          "2349-5103", 
          "2199-5796"
        ], 
        "name": "International Journal of Applied and Computational Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "double Laplace decomposition method", 
      "Laplace decomposition method", 
      "non-singular kernel", 
      "decomposition method", 
      "different fractional orders", 
      "Caputo sense", 
      "derivative converge", 
      "Atangana\u2013Baleanu", 
      "Caputo\u2013Fabrizio", 
      "aforementioned operators", 
      "exact solution", 
      "double Laplace", 
      "series solution", 
      "fractional order", 
      "corresponding numerical simulations", 
      "numerical examples", 
      "equations", 
      "error analysis", 
      "numerical simulations", 
      "physical behavior", 
      "suggested approach", 
      "operators", 
      "Caputo", 
      "solution", 
      "\u03d54", 
      "Laplace", 
      "converges", 
      "singular", 
      "kernel", 
      "simulations", 
      "sense", 
      "model", 
      "approach", 
      "system", 
      "detail", 
      "technique", 
      "order", 
      "analysis", 
      "efficiency", 
      "form", 
      "table", 
      "behavior", 
      "combination", 
      "article", 
      "method", 
      "example"
    ], 
    "name": "Analysis of Time-Fractional \u03d54-Equation with Singular and Non-Singular Kernels", 
    "pagination": "192", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140863324"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40819-021-01128-w"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40819-021-01128-w", 
      "https://app.dimensions.ai/details/publication/pub.1140863324"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_911.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40819-021-01128-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40819-021-01128-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40819-021-01128-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40819-021-01128-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40819-021-01128-w'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      77 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40819-021-01128-w schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N609b2c7f20de4cffbf72380c446689ca
4 schema:citation sg:pub.10.1007/978-3-642-81291-0
5 sg:pub.10.1007/978-94-015-8289-6
6 sg:pub.10.1140/epjp/i2018-11804-8
7 sg:pub.10.1140/epjp/i2018-11950-y
8 sg:pub.10.1186/1687-1847-2012-187
9 sg:pub.10.1186/s13662-017-1401-1
10 sg:pub.10.1186/s13662-020-03175-x
11 sg:pub.10.1515/fca-2021-0037
12 schema:datePublished 2021-09-02
13 schema:datePublishedReg 2021-09-02
14 schema:description In this article, we investigate the nonlinear time-fractional ϕ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ^{4}$$\end{document}-equation under Caputo, Caputo-Fabrizio, and Atangana-Baleanu in Caputo’s sense. The modified double Laplace decomposition method is applied to study the proposed model under the aforementioned operators. The suggested approach is the combination of double Laplace and decomposition methods. It is observed that, the obtained series solutions of the system with considered fractional derivatives converges to the exact solution. A numerical example is presented with corresponding numerical simulations to demonstrate and validate the efficiency of the proposed technique. The error analysis of the considered equation with all considered operators is presented in the form of the tables. The physical behaviors of the obtained solutions with different fractional orders are discussed in detail.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf Na14639a2e1964e48a4bbb40a02125efe
18 Na388fb9632d64ab681498bf95914db3c
19 sg:journal.1135865
20 schema:keywords Atangana–Baleanu
21 Caputo
22 Caputo sense
23 Caputo–Fabrizio
24 Laplace
25 Laplace decomposition method
26 aforementioned operators
27 analysis
28 approach
29 article
30 behavior
31 combination
32 converges
33 corresponding numerical simulations
34 decomposition method
35 derivative converge
36 detail
37 different fractional orders
38 double Laplace
39 double Laplace decomposition method
40 efficiency
41 equations
42 error analysis
43 exact solution
44 example
45 form
46 fractional order
47 kernel
48 method
49 model
50 non-singular kernel
51 numerical examples
52 numerical simulations
53 operators
54 order
55 physical behavior
56 sense
57 series solution
58 simulations
59 singular
60 solution
61 suggested approach
62 system
63 table
64 technique
65 ϕ4
66 schema:name Analysis of Time-Fractional ϕ4-Equation with Singular and Non-Singular Kernels
67 schema:pagination 192
68 schema:productId N4c60faaba72743b0b32218184d749d59
69 Nd57d605b66c44174bdb765ce5c09e6e8
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140863324
71 https://doi.org/10.1007/s40819-021-01128-w
72 schema:sdDatePublished 2022-12-01T06:43
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N8acd2c03238b44c5b2873ef09772f357
75 schema:url https://doi.org/10.1007/s40819-021-01128-w
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N06d5fe63620d48d99b4f858a04dea6af rdf:first sg:person.012721760120.23
80 rdf:rest N6b2793266a5c4de6a8665e4aaef87f80
81 N4c60faaba72743b0b32218184d749d59 schema:name doi
82 schema:value 10.1007/s40819-021-01128-w
83 rdf:type schema:PropertyValue
84 N609b2c7f20de4cffbf72380c446689ca rdf:first Nb3ec4acb5c514f0e9b53dc2d1089167a
85 rdf:rest N06d5fe63620d48d99b4f858a04dea6af
86 N6b2793266a5c4de6a8665e4aaef87f80 rdf:first sg:person.014077213200.98
87 rdf:rest rdf:nil
88 N8acd2c03238b44c5b2873ef09772f357 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Na14639a2e1964e48a4bbb40a02125efe schema:issueNumber 5
91 rdf:type schema:PublicationIssue
92 Na388fb9632d64ab681498bf95914db3c schema:volumeNumber 7
93 rdf:type schema:PublicationVolume
94 Nb3ec4acb5c514f0e9b53dc2d1089167a schema:affiliation grid-institutes:grid.440567.4
95 schema:familyName Rahman
96 schema:givenName Fazlur
97 rdf:type schema:Person
98 Nd57d605b66c44174bdb765ce5c09e6e8 schema:name dimensions_id
99 schema:value pub.1140863324
100 rdf:type schema:PropertyValue
101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mathematical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
105 schema:name Pure Mathematics
106 rdf:type schema:DefinedTerm
107 sg:journal.1135865 schema:issn 2199-5796
108 2349-5103
109 schema:name International Journal of Applied and Computational Mathematics
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.012721760120.23 schema:affiliation grid-institutes:grid.440567.4
113 schema:familyName Ali
114 schema:givenName Amir
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721760120.23
116 rdf:type schema:Person
117 sg:person.014077213200.98 schema:affiliation grid-institutes:grid.440567.4
118 schema:familyName Saifullah
119 schema:givenName Sayed
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077213200.98
121 rdf:type schema:Person
122 sg:pub.10.1007/978-3-642-81291-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050849745
123 https://doi.org/10.1007/978-3-642-81291-0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-94-015-8289-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029030517
126 https://doi.org/10.1007/978-94-015-8289-6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1140/epjp/i2018-11804-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100161803
129 https://doi.org/10.1140/epjp/i2018-11804-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1140/epjp/i2018-11950-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1101303448
132 https://doi.org/10.1140/epjp/i2018-11950-y
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/1687-1847-2012-187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051180991
135 https://doi.org/10.1186/1687-1847-2012-187
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/s13662-017-1401-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092346841
138 https://doi.org/10.1186/s13662-017-1401-1
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/s13662-020-03175-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1134421580
141 https://doi.org/10.1186/s13662-020-03175-x
142 rdf:type schema:CreativeWork
143 sg:pub.10.1515/fca-2021-0037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139069830
144 https://doi.org/10.1515/fca-2021-0037
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.440567.4 schema:alternateName Department of Mathematics, University of Malakand Chakdara Dir(L) KP Pakistan, Chakdara, Pakistan
147 schema:name Department of Mathematics, University of Malakand Chakdara Dir(L) KP Pakistan, Chakdara, Pakistan
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...