Lie Analysis and Novel Analytical Solutions for the Time-Fractional Coupled Whitham–Broer–Kaup Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

R. Sadat, M. M. Kassem

ABSTRACT

The Lie point symmetries for the fractional Riemann–Liouville system are used to reduce Fractional Whitham–Broer–Kaup (FWBK) equations to nonlinear fractional ordinary differential equations using the prolongation theorem. FWBK describe the propagation of fluid with different dispersive coefficients in shallow waters. Through the conformable derivative, we apply the integrating factors and Riccati–Bernoulli sub-equation methods. New solutions have been generated. Comparison with previous works has been presented. A mathematical modeling for the long water wave motion between two non-mixed fluids was also studied. More... »

PAGES

28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40819-019-0611-5

DOI

http://dx.doi.org/10.1007/s40819-019-0611-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112142041


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zagazig University", 
          "id": "https://www.grid.ac/institutes/grid.31451.32", 
          "name": [
            "Faculty of Engineering, Physics and Mathematics Department, Zagazig University, Ash Sharqiyah, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadat", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zagazig University", 
          "id": "https://www.grid.ac/institutes/grid.31451.32", 
          "name": [
            "Faculty of Engineering, Physics and Mathematics Department, Zagazig University, Ash Sharqiyah, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kassem", 
        "givenName": "M. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cpc.2013.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000553953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2014.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012708443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.11.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019368019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2014.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025969632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/jnmp.2008.15.4.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026781370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1967.0119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027517996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2010.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036410754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00418048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048513352", 
          "https://doi.org/10.1007/bf00418048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00418048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048513352", 
          "https://doi.org/10.1007/bf00418048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/phys-2016-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050929828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2011.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051147220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10092-015-0158-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052525009", 
          "https://doi.org/10.1007/s10092-015-0158-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/34/18/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059077330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.54.396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063135817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12732/ijpam.v106i4.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064641202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11648/j.pamj.20160506.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084238076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/tsci160510079w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084403402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15388/na.2017.4.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091135502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-017-1187-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092261283", 
          "https://doi.org/10.1007/s11082-017-1187-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2017.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093127030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2017.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100102089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2017.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100102089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-018-1468-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100801035", 
          "https://doi.org/10.1186/s13662-018-1468-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15388/na.2017.6.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101012472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-018-1410-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101267536", 
          "https://doi.org/10.1007/s11082-018-1410-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-018-1410-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101267536", 
          "https://doi.org/10.1007/s11082-018-1410-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-018-1410-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101267536", 
          "https://doi.org/10.1007/s11082-018-1410-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/mca23010015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101541236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-018-1459-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101901620", 
          "https://doi.org/10.1007/s11082-018-1459-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-018-1459-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101901620", 
          "https://doi.org/10.1007/s11082-018-1459-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-018-1459-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101901620", 
          "https://doi.org/10.1007/s11082-018-1459-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2018.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103625624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/phys-2018-0042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104340840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-12068-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105099289", 
          "https://doi.org/10.1140/epjp/i2018-12068-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-12068-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105099289", 
          "https://doi.org/10.1140/epjp/i2018-12068-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/phys-2018-0049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105215872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jap.2018.1390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105383193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.11.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110285214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.11.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110285214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.11.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110285214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.11.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110285214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.11.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110285214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.11.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110285214"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The Lie point symmetries for the fractional Riemann\u2013Liouville system are used to reduce Fractional Whitham\u2013Broer\u2013Kaup (FWBK) equations to nonlinear fractional ordinary differential equations using the prolongation theorem. FWBK describe the propagation of fluid with different dispersive coefficients in shallow waters. Through the conformable derivative, we apply the integrating factors and Riccati\u2013Bernoulli sub-equation methods. New solutions have been generated. Comparison with previous works has been presented. A mathematical modeling for the long water wave motion between two non-mixed fluids was also studied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40819-019-0611-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135865", 
        "issn": [
          "2349-5103", 
          "2199-5796"
        ], 
        "name": "International Journal of Applied and Computational Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Lie Analysis and Novel Analytical Solutions for the Time-Fractional Coupled Whitham\u2013Broer\u2013Kaup Equations", 
    "pagination": "28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87ee57135dd946277e54bd7d24d433af7217f4c9804909eae38d6abc40d4e60b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40819-019-0611-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112142041"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40819-019-0611-5", 
      "https://app.dimensions.ai/details/publication/pub.1112142041"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37553_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40819-019-0611-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40819-019-0611-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40819-019-0611-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40819-019-0611-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40819-019-0611-5'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40819-019-0611-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nffb66e72500843889972d328765357c8
4 schema:citation sg:pub.10.1007/bf00418048
5 sg:pub.10.1007/s10092-015-0158-8
6 sg:pub.10.1007/s11082-017-1187-0
7 sg:pub.10.1007/s11082-018-1410-7
8 sg:pub.10.1007/s11082-018-1459-3
9 sg:pub.10.1140/epjp/i2018-12068-0
10 sg:pub.10.1186/s13662-018-1468-3
11 https://doi.org/10.1016/j.cam.2014.01.002
12 https://doi.org/10.1016/j.camwa.2017.12.001
13 https://doi.org/10.1016/j.cnsns.2012.11.032
14 https://doi.org/10.1016/j.cnsns.2014.07.022
15 https://doi.org/10.1016/j.cnsns.2017.11.015
16 https://doi.org/10.1016/j.cnsns.2018.04.019
17 https://doi.org/10.1016/j.cpc.2013.09.019
18 https://doi.org/10.1016/j.oceaneng.2010.09.014
19 https://doi.org/10.1016/j.physleta.2011.01.029
20 https://doi.org/10.1016/j.rinp.2018.11.056
21 https://doi.org/10.1088/0305-4470/34/18/304
22 https://doi.org/10.1098/rspa.1967.0119
23 https://doi.org/10.1143/ptp.54.396
24 https://doi.org/10.11648/j.pamj.20160506.11
25 https://doi.org/10.1166/jap.2018.1390
26 https://doi.org/10.12732/ijpam.v106i4.3
27 https://doi.org/10.1515/phys-2016-0003
28 https://doi.org/10.1515/phys-2018-0042
29 https://doi.org/10.1515/phys-2018-0049
30 https://doi.org/10.15388/na.2017.4.2
31 https://doi.org/10.15388/na.2017.6.9
32 https://doi.org/10.2298/tsci160510079w
33 https://doi.org/10.2991/jnmp.2008.15.4.3
34 https://doi.org/10.3390/mca23010015
35 schema:datePublished 2019-04
36 schema:datePublishedReg 2019-04-01
37 schema:description The Lie point symmetries for the fractional Riemann–Liouville system are used to reduce Fractional Whitham–Broer–Kaup (FWBK) equations to nonlinear fractional ordinary differential equations using the prolongation theorem. FWBK describe the propagation of fluid with different dispersive coefficients in shallow waters. Through the conformable derivative, we apply the integrating factors and Riccati–Bernoulli sub-equation methods. New solutions have been generated. Comparison with previous works has been presented. A mathematical modeling for the long water wave motion between two non-mixed fluids was also studied.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N6d27c0b2e6e84731aba61fd15cd3121c
42 N9d0f88825e9d45fea45dc186655aaebd
43 sg:journal.1135865
44 schema:name Lie Analysis and Novel Analytical Solutions for the Time-Fractional Coupled Whitham–Broer–Kaup Equations
45 schema:pagination 28
46 schema:productId N4c7140c341a44a68bf98db352f04a755
47 Na18f12da48e0431b9adb6b3e1bf8b3bb
48 Nc5a71a3bdf224d11a673922a4d29630c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112142041
50 https://doi.org/10.1007/s40819-019-0611-5
51 schema:sdDatePublished 2019-04-11T09:06
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nbcb0aafef93342189e6bdc70d6f3e72d
54 schema:url https://link.springer.com/10.1007%2Fs40819-019-0611-5
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N49bcddbdc5234659a41ab7d7b1d7344b schema:affiliation https://www.grid.ac/institutes/grid.31451.32
59 schema:familyName Sadat
60 schema:givenName R.
61 rdf:type schema:Person
62 N4c7140c341a44a68bf98db352f04a755 schema:name readcube_id
63 schema:value 87ee57135dd946277e54bd7d24d433af7217f4c9804909eae38d6abc40d4e60b
64 rdf:type schema:PropertyValue
65 N6d27c0b2e6e84731aba61fd15cd3121c schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 N98e4e66cca6d416dbd8951a5bdb94b70 schema:affiliation https://www.grid.ac/institutes/grid.31451.32
68 schema:familyName Kassem
69 schema:givenName M. M.
70 rdf:type schema:Person
71 N9d0f88825e9d45fea45dc186655aaebd schema:volumeNumber 5
72 rdf:type schema:PublicationVolume
73 Na18f12da48e0431b9adb6b3e1bf8b3bb schema:name dimensions_id
74 schema:value pub.1112142041
75 rdf:type schema:PropertyValue
76 Nbcb0aafef93342189e6bdc70d6f3e72d schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nc5a71a3bdf224d11a673922a4d29630c schema:name doi
79 schema:value 10.1007/s40819-019-0611-5
80 rdf:type schema:PropertyValue
81 Nd5943d5ab3844fc3a536ab6525be723d rdf:first N98e4e66cca6d416dbd8951a5bdb94b70
82 rdf:rest rdf:nil
83 Nffb66e72500843889972d328765357c8 rdf:first N49bcddbdc5234659a41ab7d7b1d7344b
84 rdf:rest Nd5943d5ab3844fc3a536ab6525be723d
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
89 schema:name Pure Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1135865 schema:issn 2199-5796
92 2349-5103
93 schema:name International Journal of Applied and Computational Mathematics
94 rdf:type schema:Periodical
95 sg:pub.10.1007/bf00418048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048513352
96 https://doi.org/10.1007/bf00418048
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10092-015-0158-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052525009
99 https://doi.org/10.1007/s10092-015-0158-8
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11082-017-1187-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092261283
102 https://doi.org/10.1007/s11082-017-1187-0
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11082-018-1410-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101267536
105 https://doi.org/10.1007/s11082-018-1410-7
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11082-018-1459-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101901620
108 https://doi.org/10.1007/s11082-018-1459-3
109 rdf:type schema:CreativeWork
110 sg:pub.10.1140/epjp/i2018-12068-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105099289
111 https://doi.org/10.1140/epjp/i2018-12068-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1186/s13662-018-1468-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100801035
114 https://doi.org/10.1186/s13662-018-1468-3
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.cam.2014.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012708443
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.camwa.2017.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100102089
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.cnsns.2012.11.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019368019
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cnsns.2014.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025969632
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cnsns.2017.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093127030
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cnsns.2018.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103625624
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.cpc.2013.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000553953
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.oceaneng.2010.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036410754
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.physleta.2011.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051147220
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.rinp.2018.11.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110285214
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/0305-4470/34/18/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059077330
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1098/rspa.1967.0119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027517996
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1143/ptp.54.396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063135817
141 rdf:type schema:CreativeWork
142 https://doi.org/10.11648/j.pamj.20160506.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084238076
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1166/jap.2018.1390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105383193
145 rdf:type schema:CreativeWork
146 https://doi.org/10.12732/ijpam.v106i4.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064641202
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1515/phys-2016-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050929828
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1515/phys-2018-0042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104340840
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1515/phys-2018-0049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105215872
153 rdf:type schema:CreativeWork
154 https://doi.org/10.15388/na.2017.4.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091135502
155 rdf:type schema:CreativeWork
156 https://doi.org/10.15388/na.2017.6.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101012472
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2298/tsci160510079w schema:sameAs https://app.dimensions.ai/details/publication/pub.1084403402
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2991/jnmp.2008.15.4.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026781370
161 rdf:type schema:CreativeWork
162 https://doi.org/10.3390/mca23010015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101541236
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.31451.32 schema:alternateName Zagazig University
165 schema:name Faculty of Engineering, Physics and Mathematics Department, Zagazig University, Ash Sharqiyah, Egypt
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...