Ontology type: schema:ScholarlyArticle
2017-08-08
AUTHORSIoannis K. Argyros, Soham M. Sheth, Rami M. Younis, Á. Alberto Magreñán, Santhosh George
ABSTRACTThe mesh independence principle states that, if Newton’s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process is essentially the same as that of the initial method. This principle was inagurated in Allgower et al. (SIAM J Numer Anal 23(1):160–169, 1986). Using our new Newton–Kantorovich-like theorem and under the same information we show how to extend the applicability of this principle in cases not possible before. The results can be used to provide more efficient programming methods. More... »
PAGES1035-1046
http://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1
DOIhttp://dx.doi.org/10.1007/s40819-017-0398-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1091085011
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematicsal Sciences, Cameron University, 73505, Lawton, OK, USA",
"id": "http://www.grid.ac/institutes/grid.253592.a",
"name": [
"Department of Mathematicsal Sciences, Cameron University, 73505, Lawton, OK, USA"
],
"type": "Organization"
},
"familyName": "Argyros",
"givenName": "Ioannis K.",
"id": "sg:person.015707547201.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The University of Tulsa, 74104, Tulsa, OK, USA",
"id": "http://www.grid.ac/institutes/grid.267360.6",
"name": [
"The University of Tulsa, 74104, Tulsa, OK, USA"
],
"type": "Organization"
},
"familyName": "Sheth",
"givenName": "Soham M.",
"id": "sg:person.013201141743.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013201141743.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The University of Tulsa, 74104, Tulsa, OK, USA",
"id": "http://www.grid.ac/institutes/grid.267360.6",
"name": [
"The University of Tulsa, 74104, Tulsa, OK, USA"
],
"type": "Organization"
},
"familyName": "Younis",
"givenName": "Rami M.",
"id": "sg:person.07631075317.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07631075317.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Department of Mathematics, Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Magre\u00f1\u00e1n",
"givenName": "\u00c1. Alberto",
"id": "sg:person.013576636334.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematical and Computational Sciences, NIT Karnataka, 575025, Mangalore, India",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Mathematical and Computational Sciences, NIT Karnataka, 575025, Mangalore, India"
],
"type": "Organization"
},
"familyName": "George",
"givenName": "Santhosh",
"id": "sg:person.016015532400.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10107-004-0540-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006341851",
"https://doi.org/10.1007/s10107-004-0540-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0069371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047019046",
"https://doi.org/10.1007/bfb0069371"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02252130",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042802361",
"https://doi.org/10.1007/bf02252130"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-08-08",
"datePublishedReg": "2017-08-08",
"description": "The mesh independence principle states that, if Newton\u2019s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process is essentially the same as that of the initial method. This principle was inagurated in Allgower et al. (SIAM J Numer Anal 23(1):160\u2013169, 1986). Using our new Newton\u2013Kantorovich-like theorem and under the same information we show how to extend the applicability of this principle in cases not possible before. The results can be used to provide more efficient programming methods.",
"genre": "article",
"id": "sg:pub.10.1007/s40819-017-0398-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1135865",
"issn": [
"2349-5103",
"2199-5796"
],
"name": "International Journal of Applied and Computational Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "Suppl 1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"keywords": [
"mesh independence principle",
"finite-dimensional discretizations",
"efficient programming methods",
"Newton-Kantorovich",
"nonlinear equations",
"Newton method",
"Banach spaces",
"like theorem",
"discretized process",
"dimensional discretization",
"programming method",
"equations",
"mesh independence",
"independence principle",
"discretization",
"theorem",
"et al",
"principles",
"space",
"same information",
"applicability",
"initial method",
"al",
"cases",
"behavior",
"domain",
"results",
"independence",
"information",
"process",
"method"
],
"name": "Extending the Mesh Independence For Solving Nonlinear Equations Using Restricted Domains",
"pagination": "1035-1046",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1091085011"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40819-017-0398-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40819-017-0398-1",
"https://app.dimensions.ai/details/publication/pub.1091085011"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_726.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40819-017-0398-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
22 PREDICATES
59 URIs
48 LITERALS
6 BLANK NODES