Extending the Mesh Independence For Solving Nonlinear Equations Using Restricted Domains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-08

AUTHORS

Ioannis K. Argyros, Soham M. Sheth, Rami M. Younis, Á. Alberto Magreñán, Santhosh George

ABSTRACT

The mesh independence principle states that, if Newton’s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process is essentially the same as that of the initial method. This principle was inagurated in Allgower et al. (SIAM J Numer Anal 23(1):160–169, 1986). Using our new Newton–Kantorovich-like theorem and under the same information we show how to extend the applicability of this principle in cases not possible before. The results can be used to provide more efficient programming methods. More... »

PAGES

1035-1046

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1

DOI

http://dx.doi.org/10.1007/s40819-017-0398-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091085011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematicsal Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematicsal Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Tulsa, 74104, Tulsa, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.267360.6", 
          "name": [
            "The University of Tulsa, 74104, Tulsa, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheth", 
        "givenName": "Soham M.", 
        "id": "sg:person.013201141743.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013201141743.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Tulsa, 74104, Tulsa, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.267360.6", 
          "name": [
            "The University of Tulsa, 74104, Tulsa, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Younis", 
        "givenName": "Rami M.", 
        "id": "sg:person.07631075317.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07631075317.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Department of Mathematics, Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magre\u00f1\u00e1n", 
        "givenName": "\u00c1. Alberto", 
        "id": "sg:person.013576636334.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical and Computational Sciences, NIT Karnataka, 575025, Mangalore, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematical and Computational Sciences, NIT Karnataka, 575025, Mangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "George", 
        "givenName": "Santhosh", 
        "id": "sg:person.016015532400.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10107-004-0540-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006341851", 
          "https://doi.org/10.1007/s10107-004-0540-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0069371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047019046", 
          "https://doi.org/10.1007/bfb0069371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02252130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042802361", 
          "https://doi.org/10.1007/bf02252130"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-08", 
    "datePublishedReg": "2017-08-08", 
    "description": "The mesh independence principle states that, if Newton\u2019s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process is essentially the same as that of the initial method. This principle was inagurated in Allgower et al. (SIAM J Numer Anal 23(1):160\u2013169, 1986). Using our new Newton\u2013Kantorovich-like theorem and under the same information we show how to extend the applicability of this principle in cases not possible before. The results can be used to provide more efficient programming methods.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40819-017-0398-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135865", 
        "issn": [
          "2349-5103", 
          "2199-5796"
        ], 
        "name": "International Journal of Applied and Computational Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "mesh independence principle", 
      "finite-dimensional discretizations", 
      "efficient programming methods", 
      "Newton-Kantorovich", 
      "nonlinear equations", 
      "Newton method", 
      "Banach spaces", 
      "like theorem", 
      "discretized process", 
      "dimensional discretization", 
      "programming method", 
      "equations", 
      "mesh independence", 
      "independence principle", 
      "discretization", 
      "theorem", 
      "et al", 
      "principles", 
      "space", 
      "same information", 
      "applicability", 
      "initial method", 
      "al", 
      "cases", 
      "behavior", 
      "domain", 
      "results", 
      "independence", 
      "information", 
      "process", 
      "method"
    ], 
    "name": "Extending the Mesh Independence For Solving Nonlinear Equations Using Restricted Domains", 
    "pagination": "1035-1046", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091085011"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40819-017-0398-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40819-017-0398-1", 
      "https://app.dimensions.ai/details/publication/pub.1091085011"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_726.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40819-017-0398-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0398-1'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      59 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40819-017-0398-1 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N46113609905b45129d0e2b7a821875c9
4 schema:citation sg:pub.10.1007/bf02252130
5 sg:pub.10.1007/bfb0069371
6 sg:pub.10.1007/s10107-004-0540-9
7 schema:datePublished 2017-08-08
8 schema:datePublishedReg 2017-08-08
9 schema:description The mesh independence principle states that, if Newton’s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process is essentially the same as that of the initial method. This principle was inagurated in Allgower et al. (SIAM J Numer Anal 23(1):160–169, 1986). Using our new Newton–Kantorovich-like theorem and under the same information we show how to extend the applicability of this principle in cases not possible before. The results can be used to provide more efficient programming methods.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N4db0fb7c525745bfa530760ac773913f
14 N8a2b7fe8c4c34ed99886ee4762227d32
15 sg:journal.1135865
16 schema:keywords Banach spaces
17 Newton method
18 Newton-Kantorovich
19 al
20 applicability
21 behavior
22 cases
23 dimensional discretization
24 discretization
25 discretized process
26 domain
27 efficient programming methods
28 equations
29 et al
30 finite-dimensional discretizations
31 independence
32 independence principle
33 information
34 initial method
35 like theorem
36 mesh independence
37 mesh independence principle
38 method
39 nonlinear equations
40 principles
41 process
42 programming method
43 results
44 same information
45 space
46 theorem
47 schema:name Extending the Mesh Independence For Solving Nonlinear Equations Using Restricted Domains
48 schema:pagination 1035-1046
49 schema:productId N3179b94259b446e39c8fe84593316e7c
50 Nd81a459ed69942cd8326b23457fd71c9
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091085011
52 https://doi.org/10.1007/s40819-017-0398-1
53 schema:sdDatePublished 2022-05-20T07:33
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N510dfff1967f45a8986cd35a5b3d7b2e
56 schema:url https://doi.org/10.1007/s40819-017-0398-1
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N02c83729779b4af79c171de23efdc4f8 rdf:first sg:person.013201141743.92
61 rdf:rest N88f6867c566246afa1692364ae6f4cc7
62 N3179b94259b446e39c8fe84593316e7c schema:name dimensions_id
63 schema:value pub.1091085011
64 rdf:type schema:PropertyValue
65 N46113609905b45129d0e2b7a821875c9 rdf:first sg:person.015707547201.06
66 rdf:rest N02c83729779b4af79c171de23efdc4f8
67 N4db0fb7c525745bfa530760ac773913f schema:volumeNumber 3
68 rdf:type schema:PublicationVolume
69 N510dfff1967f45a8986cd35a5b3d7b2e schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N5b094149cc5a45269b33802fefd8e76c rdf:first sg:person.016015532400.41
72 rdf:rest rdf:nil
73 N88f6867c566246afa1692364ae6f4cc7 rdf:first sg:person.07631075317.97
74 rdf:rest Ne01f8b7cfa784a5cbf4752946a2c81c8
75 N8a2b7fe8c4c34ed99886ee4762227d32 schema:issueNumber Suppl 1
76 rdf:type schema:PublicationIssue
77 Nd81a459ed69942cd8326b23457fd71c9 schema:name doi
78 schema:value 10.1007/s40819-017-0398-1
79 rdf:type schema:PropertyValue
80 Ne01f8b7cfa784a5cbf4752946a2c81c8 rdf:first sg:person.013576636334.52
81 rdf:rest N5b094149cc5a45269b33802fefd8e76c
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
86 schema:name Numerical and Computational Mathematics
87 rdf:type schema:DefinedTerm
88 sg:journal.1135865 schema:issn 2199-5796
89 2349-5103
90 schema:name International Journal of Applied and Computational Mathematics
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.013201141743.92 schema:affiliation grid-institutes:grid.267360.6
94 schema:familyName Sheth
95 schema:givenName Soham M.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013201141743.92
97 rdf:type schema:Person
98 sg:person.013576636334.52 schema:affiliation grid-institutes:grid.13825.3d
99 schema:familyName Magreñán
100 schema:givenName Á. Alberto
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52
102 rdf:type schema:Person
103 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
104 schema:familyName Argyros
105 schema:givenName Ioannis K.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
107 rdf:type schema:Person
108 sg:person.016015532400.41 schema:affiliation grid-institutes:None
109 schema:familyName George
110 schema:givenName Santhosh
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41
112 rdf:type schema:Person
113 sg:person.07631075317.97 schema:affiliation grid-institutes:grid.267360.6
114 schema:familyName Younis
115 schema:givenName Rami M.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07631075317.97
117 rdf:type schema:Person
118 sg:pub.10.1007/bf02252130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042802361
119 https://doi.org/10.1007/bf02252130
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bfb0069371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047019046
122 https://doi.org/10.1007/bfb0069371
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10107-004-0540-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006341851
125 https://doi.org/10.1007/s10107-004-0540-9
126 rdf:type schema:CreativeWork
127 grid-institutes:None schema:alternateName Department of Mathematical and Computational Sciences, NIT Karnataka, 575025, Mangalore, India
128 schema:name Department of Mathematical and Computational Sciences, NIT Karnataka, 575025, Mangalore, India
129 rdf:type schema:Organization
130 grid-institutes:grid.13825.3d schema:alternateName Department of Mathematics, Universidad Internacional de La Rioja, C/Gran Vía 41, 26005, Logroño, La Rioja, Spain
131 schema:name Department of Mathematics, Universidad Internacional de La Rioja, C/Gran Vía 41, 26005, Logroño, La Rioja, Spain
132 rdf:type schema:Organization
133 grid-institutes:grid.253592.a schema:alternateName Department of Mathematicsal Sciences, Cameron University, 73505, Lawton, OK, USA
134 schema:name Department of Mathematicsal Sciences, Cameron University, 73505, Lawton, OK, USA
135 rdf:type schema:Organization
136 grid-institutes:grid.267360.6 schema:alternateName The University of Tulsa, 74104, Tulsa, OK, USA
137 schema:name The University of Tulsa, 74104, Tulsa, OK, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...