A New Stable Algorithm for Fractional Navier–Stokes Equation in Polar Coordinate View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-13

AUTHORS

Harendra Singh

ABSTRACT

This paper presents a new approximate method based on operational matrices of fractional integrations and differentiations for fractional Navier–Stokes equation in polar coordinate system using Legendre scaling functions as a basis. Convergence analysis as well as error analysis of the proposed methods is given. Numerical stability of the method is shown. Numerical examples are given to show the effectiveness of the proposed method. Results are compared with existing analytical methods to show the accuracy of the proposed method. More... »

PAGES

3705-3722

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40819-017-0323-7

DOI

http://dx.doi.org/10.1007/s40819-017-0323-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083806249


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Harendra", 
        "id": "sg:person.016137700515.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137700515.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02936577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032196175", 
          "https://doi.org/10.1007/bf02936577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21746-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001978842", 
          "https://doi.org/10.1007/978-0-387-21746-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8291-0_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053224177", 
          "https://doi.org/10.1007/978-3-0348-8291-0_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e20020151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046218924", 
          "https://doi.org/10.1140/epjb/e20020151"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-13", 
    "datePublishedReg": "2017-02-13", 
    "description": "This paper presents a new approximate method based on operational matrices of fractional integrations and differentiations for fractional Navier\u2013Stokes equation in polar coordinate system using Legendre scaling functions as a basis. Convergence analysis as well as error analysis of the proposed methods is given. Numerical stability of the method is shown. Numerical examples are given to show the effectiveness of the proposed method. Results are compared with existing analytical methods to show the accuracy of the proposed method.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40819-017-0323-7", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135865", 
        "issn": [
          "2349-5103", 
          "2199-5796"
        ], 
        "name": "International Journal of Applied and Computational Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "fractional Navier\u2013Stokes equations", 
      "Navier-Stokes equations", 
      "new stable algorithm", 
      "new approximate method", 
      "operational matrix", 
      "convergence analysis", 
      "stable algorithm", 
      "numerical stability", 
      "numerical examples", 
      "approximate method", 
      "polar coordinates", 
      "fractional integration", 
      "error analysis", 
      "equations", 
      "Legendre", 
      "analytical method", 
      "coordinates", 
      "algorithm", 
      "matrix", 
      "accuracy", 
      "function", 
      "system", 
      "stability", 
      "effectiveness", 
      "analysis", 
      "results", 
      "integration", 
      "basis", 
      "method", 
      "example", 
      "differentiation", 
      "paper"
    ], 
    "name": "A New Stable Algorithm for Fractional Navier\u2013Stokes Equation in Polar Coordinate", 
    "pagination": "3705-3722", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083806249"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40819-017-0323-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40819-017-0323-7", 
      "https://app.dimensions.ai/details/publication/pub.1083806249"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_742.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40819-017-0323-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0323-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0323-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0323-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40819-017-0323-7'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      60 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40819-017-0323-7 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N143fd44418464277a63e89b95c28e462
4 schema:citation sg:pub.10.1007/978-0-387-21746-8
5 sg:pub.10.1007/978-3-0348-8291-0_17
6 sg:pub.10.1007/bf02936577
7 sg:pub.10.1140/epjb/e20020151
8 schema:datePublished 2017-02-13
9 schema:datePublishedReg 2017-02-13
10 schema:description This paper presents a new approximate method based on operational matrices of fractional integrations and differentiations for fractional Navier–Stokes equation in polar coordinate system using Legendre scaling functions as a basis. Convergence analysis as well as error analysis of the proposed methods is given. Numerical stability of the method is shown. Numerical examples are given to show the effectiveness of the proposed method. Results are compared with existing analytical methods to show the accuracy of the proposed method.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N7dda7adc847e44e5a4e8935352b0ccd5
14 Nef4da003cfa84b51b4906aab6a78b313
15 sg:journal.1135865
16 schema:keywords Legendre
17 Navier-Stokes equations
18 accuracy
19 algorithm
20 analysis
21 analytical method
22 approximate method
23 basis
24 convergence analysis
25 coordinates
26 differentiation
27 effectiveness
28 equations
29 error analysis
30 example
31 fractional Navier–Stokes equations
32 fractional integration
33 function
34 integration
35 matrix
36 method
37 new approximate method
38 new stable algorithm
39 numerical examples
40 numerical stability
41 operational matrix
42 paper
43 polar coordinates
44 results
45 stability
46 stable algorithm
47 system
48 schema:name A New Stable Algorithm for Fractional Navier–Stokes Equation in Polar Coordinate
49 schema:pagination 3705-3722
50 schema:productId N329f49e840264ce7baca11f16e4758cc
51 N725a01c4e3174bd0bd5db8421580fdbc
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083806249
53 https://doi.org/10.1007/s40819-017-0323-7
54 schema:sdDatePublished 2022-11-24T21:01
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nf803571e24ca4bd881fd89b282c2a30f
57 schema:url https://doi.org/10.1007/s40819-017-0323-7
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N143fd44418464277a63e89b95c28e462 rdf:first sg:person.016137700515.41
62 rdf:rest rdf:nil
63 N329f49e840264ce7baca11f16e4758cc schema:name dimensions_id
64 schema:value pub.1083806249
65 rdf:type schema:PropertyValue
66 N725a01c4e3174bd0bd5db8421580fdbc schema:name doi
67 schema:value 10.1007/s40819-017-0323-7
68 rdf:type schema:PropertyValue
69 N7dda7adc847e44e5a4e8935352b0ccd5 schema:issueNumber 4
70 rdf:type schema:PublicationIssue
71 Nef4da003cfa84b51b4906aab6a78b313 schema:volumeNumber 3
72 rdf:type schema:PublicationVolume
73 Nf803571e24ca4bd881fd89b282c2a30f schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
76 schema:name Chemical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
79 schema:name Analytical Chemistry
80 rdf:type schema:DefinedTerm
81 sg:journal.1135865 schema:issn 2199-5796
82 2349-5103
83 schema:name International Journal of Applied and Computational Mathematics
84 schema:publisher Springer Nature
85 rdf:type schema:Periodical
86 sg:person.016137700515.41 schema:affiliation grid-institutes:grid.411507.6
87 schema:familyName Singh
88 schema:givenName Harendra
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137700515.41
90 rdf:type schema:Person
91 sg:pub.10.1007/978-0-387-21746-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001978842
92 https://doi.org/10.1007/978-0-387-21746-8
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-3-0348-8291-0_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053224177
95 https://doi.org/10.1007/978-3-0348-8291-0_17
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02936577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032196175
98 https://doi.org/10.1007/bf02936577
99 rdf:type schema:CreativeWork
100 sg:pub.10.1140/epjb/e20020151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046218924
101 https://doi.org/10.1140/epjb/e20020151
102 rdf:type schema:CreativeWork
103 grid-institutes:grid.411507.6 schema:alternateName Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, India
104 schema:name Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, India
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...