Numerical Simulation of Entropy Generation on MHD Nanofluid Towards a Stagnation Point Flow Over a Stretching Surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

M. M. Bhatti, M. M. Rashidi

ABSTRACT

In this article, entropy generation on MHD nanofluid towards a stagnation point flow over a permeable stretching surface has been investigated numerically. The governing equations of nanofluid are simplified using similarity variables with the help of momentum, energy and concentration equations. The resulting highly nonlinear coupled differential equations are solved with the help of successive linearization method and Chebyshev spectral collocation method. The impact of all the pertinent parameters such as Hartmann number, suction/injection parameter, heat source/sink parameter, Lewis number, Prandtl number, Brownian motion parameter, thermophoresis parameter are demonstrated graphically. Furthermore, the effect of Brinkman number and Reynolds number are also presented for entropy generation. It is analyzed that the velocity of the fluid increases due to greater influence of magnetic field and porosity parameter. Moreover, it is also observed that the entropy generation number increase due to the increment in Brinkman number and Reynolds number. Numerical comparison is also given with the existing published literature and found that the present results are in good agreement. More... »

PAGES

2275-2289

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40819-016-0193-4

DOI

http://dx.doi.org/10.1007/s40819-016-0193-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035702797


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, 200072, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatti", 
        "givenName": "M. M.", 
        "id": "sg:person.010641643753.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010641643753.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, 201804, Shanghai, China", 
            "ENN-Tongji Clean Energy Institute of Advanced Studies, 200072, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rashidi", 
        "givenName": "M. M.", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.01.088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002285904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.02.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004219303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0049499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004342758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2015.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004399355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2011.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005012724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2013.05.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007597630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e18040123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008821085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2015.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011006913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2016.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012175307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2007.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014332914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.07.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016557358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017279983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2015.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018448303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11012-013-9805-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019632020", 
          "https://doi.org/10.1007/s11012-013-9805-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2013.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019947576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2015.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021332614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2014.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023027197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2014.06.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024058159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-013-1179-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026959112", 
          "https://doi.org/10.1007/s00231-013-1179-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asej.2015.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028409075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/hff-01-2014-0019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030122856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2014.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030579820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jksus.2015.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035526086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2013.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038717020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cja.2013.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039975532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/cjp-2014-0370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040202740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2015.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040856473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-013-0104-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041181738", 
          "https://doi.org/10.1007/s12206-013-0104-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12648-013-0339-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044386060", 
          "https://doi.org/10.1007/s12648-013-0339-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t3866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045891442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002310100215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049059492", 
          "https://doi.org/10.1007/s002310100215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2014.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049465508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2014.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051634845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2015.07.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051976167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asej.2014.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052920759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2013.2293735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2014.2363684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.63.2443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063114474"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "In this article, entropy generation on MHD nanofluid towards a stagnation point flow over a permeable stretching surface has been investigated numerically. The governing equations of nanofluid are simplified using similarity variables with the help of momentum, energy and concentration equations. The resulting highly nonlinear coupled differential equations are solved with the help of successive linearization method and Chebyshev spectral collocation method. The impact of all the pertinent parameters such as Hartmann number, suction/injection parameter, heat source/sink parameter, Lewis number, Prandtl number, Brownian motion parameter, thermophoresis parameter are demonstrated graphically. Furthermore, the effect of Brinkman number and Reynolds number are also presented for entropy generation. It is analyzed that the velocity of the fluid increases due to greater influence of magnetic field and porosity parameter. Moreover, it is also observed that the entropy generation number increase due to the increment in Brinkman number and Reynolds number. Numerical comparison is also given with the existing published literature and found that the present results are in good agreement.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40819-016-0193-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135865", 
        "issn": [
          "2349-5103", 
          "2199-5796"
        ], 
        "name": "International Journal of Applied and Computational Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Numerical Simulation of Entropy Generation on MHD Nanofluid Towards a Stagnation Point Flow Over a Stretching Surface", 
    "pagination": "2275-2289", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa1364d63366d5706c4a6d0038b922b21df31a6cb1ba4cfbecb33a0361386835"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40819-016-0193-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035702797"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40819-016-0193-4", 
      "https://app.dimensions.ai/details/publication/pub.1035702797"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40819-016-0193-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40819-016-0193-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40819-016-0193-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40819-016-0193-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40819-016-0193-4'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40819-016-0193-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ne47b7a54b9194f8b8788042f7f8e7798
4 schema:citation sg:pub.10.1007/s00231-013-1179-y
5 sg:pub.10.1007/s002310100215
6 sg:pub.10.1007/s11012-013-9805-9
7 sg:pub.10.1007/s12206-013-0104-0
8 sg:pub.10.1007/s12648-013-0339-8
9 https://doi.org/10.1016/j.aej.2016.01.015
10 https://doi.org/10.1016/j.apt.2013.01.012
11 https://doi.org/10.1016/j.apt.2014.03.017
12 https://doi.org/10.1016/j.apt.2014.10.001
13 https://doi.org/10.1016/j.apt.2015.02.008
14 https://doi.org/10.1016/j.apt.2015.03.012
15 https://doi.org/10.1016/j.apt.2015.07.006
16 https://doi.org/10.1016/j.apt.2015.11.014
17 https://doi.org/10.1016/j.asej.2014.02.007
18 https://doi.org/10.1016/j.asej.2015.08.012
19 https://doi.org/10.1016/j.cja.2013.10.008
20 https://doi.org/10.1016/j.cma.2015.06.010
21 https://doi.org/10.1016/j.compfluid.2013.01.014
22 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004
23 https://doi.org/10.1016/j.ijnonlinmec.2007.12.021
24 https://doi.org/10.1016/j.ijthermalsci.2011.11.017
25 https://doi.org/10.1016/j.jksus.2015.06.003
26 https://doi.org/10.1016/j.jmmm.2014.08.021
27 https://doi.org/10.1016/j.jmmm.2015.01.088
28 https://doi.org/10.1016/j.jmmm.2016.02.075
29 https://doi.org/10.1016/j.molliq.2014.03.006
30 https://doi.org/10.1016/j.molliq.2014.06.037
31 https://doi.org/10.1016/j.molliq.2015.07.077
32 https://doi.org/10.1016/j.powtec.2013.05.030
33 https://doi.org/10.1016/j.powtec.2014.07.028
34 https://doi.org/10.1108/hff-01-2014-0019
35 https://doi.org/10.1109/tnano.2013.2293735
36 https://doi.org/10.1109/tnano.2014.2363684
37 https://doi.org/10.1139/cjp-2014-0370
38 https://doi.org/10.1143/jpsj.63.2443
39 https://doi.org/10.1371/journal.pone.0049499
40 https://doi.org/10.2514/1.t3866
41 https://doi.org/10.3390/e18040123
42 schema:datePublished 2017-09
43 schema:datePublishedReg 2017-09-01
44 schema:description In this article, entropy generation on MHD nanofluid towards a stagnation point flow over a permeable stretching surface has been investigated numerically. The governing equations of nanofluid are simplified using similarity variables with the help of momentum, energy and concentration equations. The resulting highly nonlinear coupled differential equations are solved with the help of successive linearization method and Chebyshev spectral collocation method. The impact of all the pertinent parameters such as Hartmann number, suction/injection parameter, heat source/sink parameter, Lewis number, Prandtl number, Brownian motion parameter, thermophoresis parameter are demonstrated graphically. Furthermore, the effect of Brinkman number and Reynolds number are also presented for entropy generation. It is analyzed that the velocity of the fluid increases due to greater influence of magnetic field and porosity parameter. Moreover, it is also observed that the entropy generation number increase due to the increment in Brinkman number and Reynolds number. Numerical comparison is also given with the existing published literature and found that the present results are in good agreement.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf Ncc9452700f4f4cfea51720565dcd6cf6
49 Nf548b62d786f452f852d5e5a57df20a3
50 sg:journal.1135865
51 schema:name Numerical Simulation of Entropy Generation on MHD Nanofluid Towards a Stagnation Point Flow Over a Stretching Surface
52 schema:pagination 2275-2289
53 schema:productId N49a6b1b3a1ac4dfb83ac020e2e001aaf
54 N723824b95e6642f49d4b8d2de4fbe82c
55 N847e4e6f6a98451e9d2f38eb74d4df35
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035702797
57 https://doi.org/10.1007/s40819-016-0193-4
58 schema:sdDatePublished 2019-04-11T12:42
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N279e810589f0457aa04c2ee45501ed32
61 schema:url https://link.springer.com/10.1007%2Fs40819-016-0193-4
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N279e810589f0457aa04c2ee45501ed32 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N2b3507fcda5c490d9fdf23ea6ef2eefc rdf:first sg:person.016573246311.03
68 rdf:rest rdf:nil
69 N49a6b1b3a1ac4dfb83ac020e2e001aaf schema:name readcube_id
70 schema:value aa1364d63366d5706c4a6d0038b922b21df31a6cb1ba4cfbecb33a0361386835
71 rdf:type schema:PropertyValue
72 N723824b95e6642f49d4b8d2de4fbe82c schema:name dimensions_id
73 schema:value pub.1035702797
74 rdf:type schema:PropertyValue
75 N847e4e6f6a98451e9d2f38eb74d4df35 schema:name doi
76 schema:value 10.1007/s40819-016-0193-4
77 rdf:type schema:PropertyValue
78 Ncc9452700f4f4cfea51720565dcd6cf6 schema:volumeNumber 3
79 rdf:type schema:PublicationVolume
80 Ne47b7a54b9194f8b8788042f7f8e7798 rdf:first sg:person.010641643753.67
81 rdf:rest N2b3507fcda5c490d9fdf23ea6ef2eefc
82 Nf548b62d786f452f852d5e5a57df20a3 schema:issueNumber 3
83 rdf:type schema:PublicationIssue
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
88 schema:name Interdisciplinary Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1135865 schema:issn 2199-5796
91 2349-5103
92 schema:name International Journal of Applied and Computational Mathematics
93 rdf:type schema:Periodical
94 sg:person.010641643753.67 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
95 schema:familyName Bhatti
96 schema:givenName M. M.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010641643753.67
98 rdf:type schema:Person
99 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
100 schema:familyName Rashidi
101 schema:givenName M. M.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
103 rdf:type schema:Person
104 sg:pub.10.1007/s00231-013-1179-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026959112
105 https://doi.org/10.1007/s00231-013-1179-y
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s002310100215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049059492
108 https://doi.org/10.1007/s002310100215
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11012-013-9805-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019632020
111 https://doi.org/10.1007/s11012-013-9805-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s12206-013-0104-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041181738
114 https://doi.org/10.1007/s12206-013-0104-0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s12648-013-0339-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044386060
117 https://doi.org/10.1007/s12648-013-0339-8
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.aej.2016.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012175307
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.apt.2013.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038717020
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.apt.2014.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030579820
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.apt.2014.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049465508
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.apt.2015.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011006913
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.apt.2015.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018448303
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.apt.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004399355
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.apt.2015.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040856473
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.asej.2014.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052920759
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.asej.2015.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028409075
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.cja.2013.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039975532
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cma.2015.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021332614
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.compfluid.2013.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019947576
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017279983
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ijnonlinmec.2007.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014332914
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijthermalsci.2011.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005012724
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jksus.2015.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035526086
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jmmm.2014.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051634845
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jmmm.2015.01.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002285904
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jmmm.2016.02.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004219303
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.molliq.2014.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023027197
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.molliq.2014.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024058159
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.molliq.2015.07.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051976167
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.powtec.2013.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007597630
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.powtec.2014.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016557358
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1108/hff-01-2014-0019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030122856
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tnano.2013.2293735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713112
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tnano.2014.2363684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713251
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1139/cjp-2014-0370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040202740
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1143/jpsj.63.2443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063114474
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1371/journal.pone.0049499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004342758
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2514/1.t3866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045891442
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3390/e18040123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008821085
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
186 schema:name ENN-Tongji Clean Energy Institute of Advanced Studies, 200072, Shanghai, China
187 Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, 201804, Shanghai, China
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
190 schema:name Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, 200072, Shanghai, China
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...