Transitive Fuzzy Similarity Multigraph-Based Model for Alternative Clustering in Multi-criteria Group Decision-Making Problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02-05

AUTHORS

Azadeh Zahedi Khameneh, Adem Kilicman, Fadzilah Md Ali

ABSTRACT

Graph node clustering methods, which aim to partition graph vertices into several disjoint groups of data with similar features, are usually fulfilled based on topological structural similarity of nodes, such as connectivity between vertices or neighborhood similarity of them. However, the attribute-based clustering is recently challenging to data clustering. The present paper contributes to considering a novel data clustering algorithm, called FBC-Cluster, based on fuzzy multigraphs in terms of both structural and attribute similarities. In the proposed algorithm, attribute similarity is achieved through m-polar fuzzy T-equivalences among alternatives (objects) and structural similarity is defined based on a new similarity measurement, called behavioral similarity index, using closed neighborhood in the attributed clusters. The output of the proposed clustering algorithm includes two main categories, namely certain and possible clusters, based on threshold level β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} given on the behavioral similarity index. A numerical example is discussed to demonstrate the performance of the designed clustering algorithm. The quality of resultant clusters is also evaluated through density and entropy functions. More... »

PAGES

2569-2590

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40815-021-01213-8

DOI

http://dx.doi.org/10.1007/s40815-021-01213-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145301056


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Mathematical Research, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Institute for Mathematical Research, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khameneh", 
        "givenName": "Azadeh Zahedi", 
        "id": "sg:person.011777430245.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011777430245.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Institute for Mathematical Research, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia", 
            "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kilicman", 
        "givenName": "Adem", 
        "id": "sg:person.014231676063.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Institute for Mathematical Research, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia", 
            "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali", 
        "givenName": "Fadzilah Md", 
        "id": "sg:person.07457342753.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457342753.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40815-019-00763-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123236788", 
          "https://doi.org/10.1007/s40815-019-00763-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1648-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023562048", 
          "https://doi.org/10.1007/978-94-017-1648-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40314-020-01371-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132735840", 
          "https://doi.org/10.1007/s40314-020-01371-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10619-014-7170-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039296918", 
          "https://doi.org/10.1007/s10619-014-7170-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40314-020-01315-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130617439", 
          "https://doi.org/10.1007/s40314-020-01315-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-66501-2_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134980709", 
          "https://doi.org/10.1007/978-3-030-66501-2_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-50146-4_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128245804", 
          "https://doi.org/10.1007/978-3-030-50146-4_29"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02-05", 
    "datePublishedReg": "2022-02-05", 
    "description": "Graph node clustering methods, which aim to partition graph vertices into several disjoint groups of data with similar features, are usually fulfilled based on topological structural similarity of nodes, such as connectivity between vertices or neighborhood similarity of them. However, the attribute-based clustering is recently challenging to data clustering. The present paper contributes to considering a novel data clustering algorithm, called FBC-Cluster, based on fuzzy multigraphs in terms of both structural and attribute similarities. In the proposed algorithm, attribute similarity is achieved through m-polar fuzzy T-equivalences among alternatives (objects) and structural similarity is defined based on a new similarity measurement, called behavioral similarity index, using closed neighborhood in the attributed clusters. The output of the proposed clustering algorithm includes two main categories, namely certain and possible clusters, based on threshold level \u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta$$\\end{document} given on the behavioral similarity index. A numerical example is discussed to demonstrate the performance of the designed clustering algorithm. The quality of resultant clusters is also evaluated through density and entropy functions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40815-021-01213-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135916", 
        "issn": [
          "1562-2479", 
          "2199-3211"
        ], 
        "name": "International Journal of Fuzzy Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "multi-criteria group decision-making problems", 
      "group decision-making problems", 
      "numerical examples", 
      "entropy function", 
      "graph vertices", 
      "decision-making problems", 
      "T-equivalences", 
      "closed neighborhood", 
      "clustering algorithm", 
      "disjoint groups", 
      "data clustering", 
      "possible clusters", 
      "clustering method", 
      "multigraph", 
      "alternative clusterings", 
      "vertices", 
      "algorithm", 
      "present paper", 
      "neighborhood similarity", 
      "clustering", 
      "node clustering methods", 
      "clusters", 
      "resultant clusters", 
      "problem", 
      "similarity measurement", 
      "neighborhood", 
      "similar features", 
      "model", 
      "attribute similarity", 
      "terms", 
      "similarity index", 
      "function", 
      "nodes", 
      "output", 
      "connectivity", 
      "density", 
      "data", 
      "measurements", 
      "performance", 
      "features", 
      "similarity", 
      "new similarity measurement", 
      "threshold level", 
      "main categories", 
      "alternative", 
      "index", 
      "structural similarity", 
      "categories", 
      "quality", 
      "novel data", 
      "levels", 
      "group", 
      "paper", 
      "example", 
      "method"
    ], 
    "name": "Transitive Fuzzy Similarity Multigraph-Based Model for Alternative Clustering in Multi-criteria Group Decision-Making Problems", 
    "pagination": "2569-2590", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145301056"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40815-021-01213-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40815-021-01213-8", 
      "https://app.dimensions.ai/details/publication/pub.1145301056"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_921.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40815-021-01213-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40815-021-01213-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40815-021-01213-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40815-021-01213-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40815-021-01213-8'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      86 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40815-021-01213-8 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nd87b1706750f47a5991672a33a32cb38
4 schema:citation sg:pub.10.1007/978-3-030-50146-4_29
5 sg:pub.10.1007/978-3-030-66501-2_35
6 sg:pub.10.1007/978-94-017-1648-2
7 sg:pub.10.1007/s10619-014-7170-x
8 sg:pub.10.1007/s40314-020-01315-3
9 sg:pub.10.1007/s40314-020-01371-9
10 sg:pub.10.1007/s40815-019-00763-2
11 schema:datePublished 2022-02-05
12 schema:datePublishedReg 2022-02-05
13 schema:description Graph node clustering methods, which aim to partition graph vertices into several disjoint groups of data with similar features, are usually fulfilled based on topological structural similarity of nodes, such as connectivity between vertices or neighborhood similarity of them. However, the attribute-based clustering is recently challenging to data clustering. The present paper contributes to considering a novel data clustering algorithm, called FBC-Cluster, based on fuzzy multigraphs in terms of both structural and attribute similarities. In the proposed algorithm, attribute similarity is achieved through m-polar fuzzy T-equivalences among alternatives (objects) and structural similarity is defined based on a new similarity measurement, called behavioral similarity index, using closed neighborhood in the attributed clusters. The output of the proposed clustering algorithm includes two main categories, namely certain and possible clusters, based on threshold level β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} given on the behavioral similarity index. A numerical example is discussed to demonstrate the performance of the designed clustering algorithm. The quality of resultant clusters is also evaluated through density and entropy functions.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N054b3e15e2094254a5c4e4db6569e826
17 N74e31ef84e9245f99bc4ca57fcc4ed7c
18 sg:journal.1135916
19 schema:keywords T-equivalences
20 algorithm
21 alternative
22 alternative clusterings
23 attribute similarity
24 categories
25 closed neighborhood
26 clustering
27 clustering algorithm
28 clustering method
29 clusters
30 connectivity
31 data
32 data clustering
33 decision-making problems
34 density
35 disjoint groups
36 entropy function
37 example
38 features
39 function
40 graph vertices
41 group
42 group decision-making problems
43 index
44 levels
45 main categories
46 measurements
47 method
48 model
49 multi-criteria group decision-making problems
50 multigraph
51 neighborhood
52 neighborhood similarity
53 new similarity measurement
54 node clustering methods
55 nodes
56 novel data
57 numerical examples
58 output
59 paper
60 performance
61 possible clusters
62 present paper
63 problem
64 quality
65 resultant clusters
66 similar features
67 similarity
68 similarity index
69 similarity measurement
70 structural similarity
71 terms
72 threshold level
73 vertices
74 schema:name Transitive Fuzzy Similarity Multigraph-Based Model for Alternative Clustering in Multi-criteria Group Decision-Making Problems
75 schema:pagination 2569-2590
76 schema:productId N45dd6c1cda6744a88c1898a132cf81a6
77 N48c0784d716d4bd586ebf0c5dc26291f
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145301056
79 https://doi.org/10.1007/s40815-021-01213-8
80 schema:sdDatePublished 2022-12-01T06:44
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N36d5dd4ac0e1438e83cfc626b68dbe84
83 schema:url https://doi.org/10.1007/s40815-021-01213-8
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N054b3e15e2094254a5c4e4db6569e826 schema:volumeNumber 24
88 rdf:type schema:PublicationVolume
89 N36d5dd4ac0e1438e83cfc626b68dbe84 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N45dd6c1cda6744a88c1898a132cf81a6 schema:name doi
92 schema:value 10.1007/s40815-021-01213-8
93 rdf:type schema:PropertyValue
94 N48c0784d716d4bd586ebf0c5dc26291f schema:name dimensions_id
95 schema:value pub.1145301056
96 rdf:type schema:PropertyValue
97 N74e31ef84e9245f99bc4ca57fcc4ed7c schema:issueNumber 5
98 rdf:type schema:PublicationIssue
99 Nd283b55874c04fd79d904af682702958 rdf:first sg:person.014231676063.05
100 rdf:rest Nd54d6467459640ab9dacd304a00e5600
101 Nd54d6467459640ab9dacd304a00e5600 rdf:first sg:person.07457342753.25
102 rdf:rest rdf:nil
103 Nd87b1706750f47a5991672a33a32cb38 rdf:first sg:person.011777430245.54
104 rdf:rest Nd283b55874c04fd79d904af682702958
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information Systems
110 rdf:type schema:DefinedTerm
111 sg:journal.1135916 schema:issn 1562-2479
112 2199-3211
113 schema:name International Journal of Fuzzy Systems
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.011777430245.54 schema:affiliation grid-institutes:grid.11142.37
117 schema:familyName Khameneh
118 schema:givenName Azadeh Zahedi
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011777430245.54
120 rdf:type schema:Person
121 sg:person.014231676063.05 schema:affiliation grid-institutes:grid.11142.37
122 schema:familyName Kilicman
123 schema:givenName Adem
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05
125 rdf:type schema:Person
126 sg:person.07457342753.25 schema:affiliation grid-institutes:grid.11142.37
127 schema:familyName Ali
128 schema:givenName Fadzilah Md
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457342753.25
130 rdf:type schema:Person
131 sg:pub.10.1007/978-3-030-50146-4_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128245804
132 https://doi.org/10.1007/978-3-030-50146-4_29
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/978-3-030-66501-2_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134980709
135 https://doi.org/10.1007/978-3-030-66501-2_35
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/978-94-017-1648-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023562048
138 https://doi.org/10.1007/978-94-017-1648-2
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10619-014-7170-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039296918
141 https://doi.org/10.1007/s10619-014-7170-x
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s40314-020-01315-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130617439
144 https://doi.org/10.1007/s40314-020-01315-3
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s40314-020-01371-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132735840
147 https://doi.org/10.1007/s40314-020-01371-9
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s40815-019-00763-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123236788
150 https://doi.org/10.1007/s40815-019-00763-2
151 rdf:type schema:CreativeWork
152 grid-institutes:grid.11142.37 schema:alternateName Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
153 Institute for Mathematical Research, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
154 schema:name Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
155 Institute for Mathematical Research, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...