A Fuzzy Least-Squares Estimation of a Hybrid Log-Poisson Regression and Its Goodness of Fit for Optimal Loss Reserves in Insurance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Woundjiagué Apollinaire, Mbele Bidima Martin Le Doux, Waweru Mwangi Ronald

ABSTRACT

In loss reserving, the log-Poisson regression model is a well-known stochastic model underlying the chain-ladder method which is the most used method for reserving purposes. Mack (ASTIN Bull 21(01):93–109, 1991) proved that the log-Poisson model provides the same estimates as the chain-ladder method. So in this article, our objective is to improve the log-Poisson regression model in loss reserving framework. Thereby, we prove the reliability of hybrid models in loss reserving, especially when the data contain fuzziness, for example when the claims are related to body injures (Straub and Swiss in Non-life insurance mathematics, Springer, Berlin, 1988). Thus, we estimate a hybrid generalized linear model (GLM) (log-Poisson) using the fuzzy least-squares procedures (Celmiš in Fuzzy Sets Syst 22(3):245–269, 1987a; Math Model 9(9):669–690, 1987b; D’Urso and Gastaldi in Comput Stat Data Anal 34(4): 427–440, 2000; in: Advances in classification and data analysis, Springer, 2001). We develop a new goodness of fit index to compare this new model and the classical log-Poisson regression (Mack 1991). Both the classical log-Poisson model and the hybrid one are performed on a loss reserving data. According to the goodness of fit index and the mean square error prediction, we prove that the new model provide better results than the classical log-Poisson model. This comparison can be extend to any other GLM in loss reserving. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6

DOI

http://dx.doi.org/10.1007/s40815-018-0564-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110422270


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maroua", 
          "id": "https://www.grid.ac/institutes/grid.449871.7", 
          "name": [
            "Institute of Basic Sciences Technology and Innovation, Pan African University-Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya", 
            "National Advanced School of Engineering, University of Maroua, P.O. Box 46, Maroua, Cameroon"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Apollinaire", 
        "givenName": "Woundjiagu\u00e9", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Yaound\u00e9 I", 
          "id": "https://www.grid.ac/institutes/grid.412661.6", 
          "name": [
            "Faculty of Science, University of Yaounde I, P.O. Box 812, Yaound\u00e9, Cameroon"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Doux", 
        "givenName": "Mbele Bidima Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jomo Kenyatta University of Agriculture and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411943.a", 
          "name": [
            "School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronald", 
        "givenName": "Waweru Mwangi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001887179", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-48753-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001887179", 
          "https://doi.org/10.1007/978-3-642-48753-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-48753-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001887179", 
          "https://doi.org/10.1007/978-3-642-48753-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/csis121225045a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013334937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207727808941724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013629412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-1450-4.50015-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016518197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1982.4308925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017903918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(98)00370-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020367014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(89)90188-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022139980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(89)90188-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022139980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0270-0255(87)90468-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024152126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2143/ast.21.1.2005403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024389092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6687(99)00016-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032447445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033850285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59471-7_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034351587", 
          "https://doi.org/10.1007/978-3-642-59471-7_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59471-7_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034351587", 
          "https://doi.org/10.1007/978-3-642-59471-7_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2006.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037163102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(87)90070-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044058669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(87)90070-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044058669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0515036100004839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044984343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(99)00109-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045335895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(02)00117-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047804711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2006.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048571195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1357321700003809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051360353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03364-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051710894", 
          "https://doi.org/10.1007/978-3-662-03364-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03364-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051710894", 
          "https://doi.org/10.1007/978-3-662-03364-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2143/ast.36.2.2017933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069075457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2660062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102444087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2143/ast.40.2.2061138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107728515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2143/ast.42.1.2160710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107730846"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In loss reserving, the log-Poisson regression model is a well-known stochastic model underlying the chain-ladder method which is the most used method for reserving purposes. Mack (ASTIN Bull 21(01):93\u2013109, 1991) proved that the log-Poisson model provides the same estimates as the chain-ladder method. So in this article, our objective is to improve the log-Poisson regression model in loss reserving framework. Thereby, we prove the reliability of hybrid models in loss reserving, especially when the data contain fuzziness, for example when the claims are related to body injures (Straub and Swiss in Non-life insurance mathematics, Springer, Berlin, 1988). Thus, we estimate a hybrid generalized linear model (GLM) (log-Poisson) using the fuzzy least-squares procedures (Celmi\u0161 in Fuzzy Sets Syst 22(3):245\u2013269, 1987a; Math Model 9(9):669\u2013690, 1987b; D\u2019Urso and Gastaldi in Comput Stat Data Anal 34(4): 427\u2013440, 2000; in: Advances in classification and data analysis, Springer, 2001). We develop a new goodness of fit index to compare this new model and the classical log-Poisson regression (Mack 1991). Both the classical log-Poisson model and the hybrid one are performed on a loss reserving data. According to the goodness of fit index and the mean square error prediction, we prove that the new model provide better results than the classical log-Poisson model. This comparison can be extend to any other GLM in loss reserving.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40815-018-0564-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135916", 
        "issn": [
          "1562-2479", 
          "2199-3211"
        ], 
        "name": "International Journal of Fuzzy Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A Fuzzy Least-Squares Estimation of a Hybrid Log-Poisson Regression and Its Goodness of Fit for Optimal Loss Reserves in Insurance", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e3a9fb8a4ea5b37a2c0280bac2ca0f3f9e50f54f0bab6a5414686bf336afe926"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40815-018-0564-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110422270"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40815-018-0564-6", 
      "https://app.dimensions.ai/details/publication/pub.1110422270"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40815-018-0564-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40815-018-0564-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N1ef8bc52e7a147e38dbe2ef52963cabc
4 schema:citation sg:pub.10.1007/978-3-642-48753-8
5 sg:pub.10.1007/978-3-642-59471-7_32
6 sg:pub.10.1007/978-3-662-03364-7
7 https://app.dimensions.ai/details/publication/pub.1001887179
8 https://doi.org/10.1016/0165-0114(87)90070-4
9 https://doi.org/10.1016/0165-0114(89)90188-7
10 https://doi.org/10.1016/0270-0255(87)90468-4
11 https://doi.org/10.1016/b978-1-4832-1450-4.50015-8
12 https://doi.org/10.1016/j.asoc.2012.03.033
13 https://doi.org/10.1016/j.fss.2006.07.003
14 https://doi.org/10.1016/j.insmatheco.2006.03.004
15 https://doi.org/10.1016/s0019-9958(65)90241-x
16 https://doi.org/10.1016/s0165-0114(98)00370-4
17 https://doi.org/10.1016/s0167-6687(99)00016-5
18 https://doi.org/10.1016/s0167-9473(02)00117-2
19 https://doi.org/10.1016/s0167-9473(99)00109-7
20 https://doi.org/10.1017/s0515036100004839
21 https://doi.org/10.1017/s1357321700003809
22 https://doi.org/10.1080/00207727808941724
23 https://doi.org/10.1109/tsmc.1982.4308925
24 https://doi.org/10.2139/ssrn.2660062
25 https://doi.org/10.2143/ast.21.1.2005403
26 https://doi.org/10.2143/ast.36.2.2017933
27 https://doi.org/10.2143/ast.40.2.2061138
28 https://doi.org/10.2143/ast.42.1.2160710
29 https://doi.org/10.2298/csis121225045a
30 schema:datePublished 2019-04
31 schema:datePublishedReg 2019-04-01
32 schema:description In loss reserving, the log-Poisson regression model is a well-known stochastic model underlying the chain-ladder method which is the most used method for reserving purposes. Mack (ASTIN Bull 21(01):93–109, 1991) proved that the log-Poisson model provides the same estimates as the chain-ladder method. So in this article, our objective is to improve the log-Poisson regression model in loss reserving framework. Thereby, we prove the reliability of hybrid models in loss reserving, especially when the data contain fuzziness, for example when the claims are related to body injures (Straub and Swiss in Non-life insurance mathematics, Springer, Berlin, 1988). Thus, we estimate a hybrid generalized linear model (GLM) (log-Poisson) using the fuzzy least-squares procedures (Celmiš in Fuzzy Sets Syst 22(3):245–269, 1987a; Math Model 9(9):669–690, 1987b; D’Urso and Gastaldi in Comput Stat Data Anal 34(4): 427–440, 2000; in: Advances in classification and data analysis, Springer, 2001). We develop a new goodness of fit index to compare this new model and the classical log-Poisson regression (Mack 1991). Both the classical log-Poisson model and the hybrid one are performed on a loss reserving data. According to the goodness of fit index and the mean square error prediction, we prove that the new model provide better results than the classical log-Poisson model. This comparison can be extend to any other GLM in loss reserving.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N0bf6afd282184b948d0901a24ca74fac
37 Na0cac26d780b468598e191da12cb095f
38 sg:journal.1135916
39 schema:name A Fuzzy Least-Squares Estimation of a Hybrid Log-Poisson Regression and Its Goodness of Fit for Optimal Loss Reserves in Insurance
40 schema:pagination 1-15
41 schema:productId N8fe090724e26478a973b340647292675
42 Nc2404bb2c11b498b94893a233148f983
43 Nee31a50fc08a42d99fc9a20d92695a61
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110422270
45 https://doi.org/10.1007/s40815-018-0564-6
46 schema:sdDatePublished 2019-04-11T13:59
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N56d5a4d60f744f53bb3f406f73b61bba
49 schema:url https://link.springer.com/10.1007%2Fs40815-018-0564-6
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0bf6afd282184b948d0901a24ca74fac schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 N1ef8bc52e7a147e38dbe2ef52963cabc rdf:first Nf6ea3c8da3aa46abad3e828000f7b722
56 rdf:rest N505d193f6cd540db901927d205cfc024
57 N322eac410e8b4b65934297aec1d00c92 rdf:first N50d0033b89cd4899bc70c8344e5c2d4f
58 rdf:rest rdf:nil
59 N3daf260b3a394f488839389d87c8e2b4 schema:affiliation https://www.grid.ac/institutes/grid.412661.6
60 schema:familyName Le Doux
61 schema:givenName Mbele Bidima Martin
62 rdf:type schema:Person
63 N505d193f6cd540db901927d205cfc024 rdf:first N3daf260b3a394f488839389d87c8e2b4
64 rdf:rest N322eac410e8b4b65934297aec1d00c92
65 N50d0033b89cd4899bc70c8344e5c2d4f schema:affiliation https://www.grid.ac/institutes/grid.411943.a
66 schema:familyName Ronald
67 schema:givenName Waweru Mwangi
68 rdf:type schema:Person
69 N56d5a4d60f744f53bb3f406f73b61bba schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N8fe090724e26478a973b340647292675 schema:name doi
72 schema:value 10.1007/s40815-018-0564-6
73 rdf:type schema:PropertyValue
74 Na0cac26d780b468598e191da12cb095f schema:volumeNumber 21
75 rdf:type schema:PublicationVolume
76 Nc2404bb2c11b498b94893a233148f983 schema:name dimensions_id
77 schema:value pub.1110422270
78 rdf:type schema:PropertyValue
79 Nee31a50fc08a42d99fc9a20d92695a61 schema:name readcube_id
80 schema:value e3a9fb8a4ea5b37a2c0280bac2ca0f3f9e50f54f0bab6a5414686bf336afe926
81 rdf:type schema:PropertyValue
82 Nf6ea3c8da3aa46abad3e828000f7b722 schema:affiliation https://www.grid.ac/institutes/grid.449871.7
83 schema:familyName Apollinaire
84 schema:givenName Woundjiagué
85 rdf:type schema:Person
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
90 schema:name Statistics
91 rdf:type schema:DefinedTerm
92 sg:journal.1135916 schema:issn 1562-2479
93 2199-3211
94 schema:name International Journal of Fuzzy Systems
95 rdf:type schema:Periodical
96 sg:pub.10.1007/978-3-642-48753-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001887179
97 https://doi.org/10.1007/978-3-642-48753-8
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-642-59471-7_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034351587
100 https://doi.org/10.1007/978-3-642-59471-7_32
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-3-662-03364-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051710894
103 https://doi.org/10.1007/978-3-662-03364-7
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1001887179 schema:CreativeWork
106 https://doi.org/10.1016/0165-0114(87)90070-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044058669
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0165-0114(89)90188-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022139980
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0270-0255(87)90468-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024152126
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/b978-1-4832-1450-4.50015-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016518197
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.asoc.2012.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033850285
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.fss.2006.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048571195
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.insmatheco.2006.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037163102
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0165-0114(98)00370-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020367014
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0167-6687(99)00016-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032447445
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0167-9473(02)00117-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047804711
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0167-9473(99)00109-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045335895
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1017/s0515036100004839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044984343
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/s1357321700003809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051360353
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/00207727808941724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013629412
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tsmc.1982.4308925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017903918
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2139/ssrn.2660062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102444087
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2143/ast.21.1.2005403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024389092
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2143/ast.36.2.2017933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069075457
143 rdf:type schema:CreativeWork
144 https://doi.org/10.2143/ast.40.2.2061138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107728515
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2143/ast.42.1.2160710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107730846
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2298/csis121225045a schema:sameAs https://app.dimensions.ai/details/publication/pub.1013334937
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.411943.a schema:alternateName Jomo Kenyatta University of Agriculture and Technology
151 schema:name School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.412661.6 schema:alternateName Université de Yaoundé I
154 schema:name Faculty of Science, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.449871.7 schema:alternateName University of Maroua
157 schema:name Institute of Basic Sciences Technology and Innovation, Pan African University-Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
158 National Advanced School of Engineering, University of Maroua, P.O. Box 46, Maroua, Cameroon
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...