Ontology type: schema:ScholarlyArticle
2019-04
AUTHORSWoundjiagué Apollinaire, Mbele Bidima Martin Le Doux, Waweru Mwangi Ronald
ABSTRACTIn loss reserving, the log-Poisson regression model is a well-known stochastic model underlying the chain-ladder method which is the most used method for reserving purposes. Mack (ASTIN Bull 21(01):93–109, 1991) proved that the log-Poisson model provides the same estimates as the chain-ladder method. So in this article, our objective is to improve the log-Poisson regression model in loss reserving framework. Thereby, we prove the reliability of hybrid models in loss reserving, especially when the data contain fuzziness, for example when the claims are related to body injures (Straub and Swiss in Non-life insurance mathematics, Springer, Berlin, 1988). Thus, we estimate a hybrid generalized linear model (GLM) (log-Poisson) using the fuzzy least-squares procedures (Celmiš in Fuzzy Sets Syst 22(3):245–269, 1987a; Math Model 9(9):669–690, 1987b; D’Urso and Gastaldi in Comput Stat Data Anal 34(4): 427–440, 2000; in: Advances in classification and data analysis, Springer, 2001). We develop a new goodness of fit index to compare this new model and the classical log-Poisson regression (Mack 1991). Both the classical log-Poisson model and the hybrid one are performed on a loss reserving data. According to the goodness of fit index and the mean square error prediction, we prove that the new model provide better results than the classical log-Poisson model. This comparison can be extend to any other GLM in loss reserving. More... »
PAGES1-15
http://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6
DOIhttp://dx.doi.org/10.1007/s40815-018-0564-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1110422270
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Maroua",
"id": "https://www.grid.ac/institutes/grid.449871.7",
"name": [
"Institute of Basic Sciences Technology and Innovation, Pan African University-Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya",
"National Advanced School of Engineering, University of Maroua, P.O. Box 46, Maroua, Cameroon"
],
"type": "Organization"
},
"familyName": "Apollinaire",
"givenName": "Woundjiagu\u00e9",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universit\u00e9 de Yaound\u00e9 I",
"id": "https://www.grid.ac/institutes/grid.412661.6",
"name": [
"Faculty of Science, University of Yaounde I, P.O. Box 812, Yaound\u00e9, Cameroon"
],
"type": "Organization"
},
"familyName": "Le Doux",
"givenName": "Mbele Bidima Martin",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Jomo Kenyatta University of Agriculture and Technology",
"id": "https://www.grid.ac/institutes/grid.411943.a",
"name": [
"School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya"
],
"type": "Organization"
},
"familyName": "Ronald",
"givenName": "Waweru Mwangi",
"type": "Person"
}
],
"citation": [
{
"id": "https://app.dimensions.ai/details/publication/pub.1001887179",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-48753-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001887179",
"https://doi.org/10.1007/978-3-642-48753-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-48753-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001887179",
"https://doi.org/10.1007/978-3-642-48753-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0019-9958(65)90241-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009640697"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2298/csis121225045a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013334937"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00207727808941724",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013629412"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-1-4832-1450-4.50015-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016518197"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmc.1982.4308925",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017903918"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0165-0114(98)00370-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020367014"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0165-0114(89)90188-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022139980"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0165-0114(89)90188-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022139980"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0270-0255(87)90468-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024152126"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2143/ast.21.1.2005403",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024389092"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-6687(99)00016-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032447445"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2012.03.033",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033850285"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-59471-7_32",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034351587",
"https://doi.org/10.1007/978-3-642-59471-7_32"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-59471-7_32",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034351587",
"https://doi.org/10.1007/978-3-642-59471-7_32"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.insmatheco.2006.03.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037163102"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0165-0114(87)90070-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044058669"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0165-0114(87)90070-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044058669"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0515036100004839",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044984343"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-9473(99)00109-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045335895"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-9473(02)00117-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047804711"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fss.2006.07.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048571195"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s1357321700003809",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051360353"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-03364-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051710894",
"https://doi.org/10.1007/978-3-662-03364-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-03364-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051710894",
"https://doi.org/10.1007/978-3-662-03364-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2143/ast.36.2.2017933",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069075457"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2139/ssrn.2660062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1102444087"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2143/ast.40.2.2061138",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107728515"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2143/ast.42.1.2160710",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107730846"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-04",
"datePublishedReg": "2019-04-01",
"description": "In loss reserving, the log-Poisson regression model is a well-known stochastic model underlying the chain-ladder method which is the most used method for reserving purposes. Mack (ASTIN Bull 21(01):93\u2013109, 1991) proved that the log-Poisson model provides the same estimates as the chain-ladder method. So in this article, our objective is to improve the log-Poisson regression model in loss reserving framework. Thereby, we prove the reliability of hybrid models in loss reserving, especially when the data contain fuzziness, for example when the claims are related to body injures (Straub and Swiss in Non-life insurance mathematics, Springer, Berlin, 1988). Thus, we estimate a hybrid generalized linear model (GLM) (log-Poisson) using the fuzzy least-squares procedures (Celmi\u0161 in Fuzzy Sets Syst 22(3):245\u2013269, 1987a; Math Model 9(9):669\u2013690, 1987b; D\u2019Urso and Gastaldi in Comput Stat Data Anal 34(4): 427\u2013440, 2000; in: Advances in classification and data analysis, Springer, 2001). We develop a new goodness of fit index to compare this new model and the classical log-Poisson regression (Mack 1991). Both the classical log-Poisson model and the hybrid one are performed on a loss reserving data. According to the goodness of fit index and the mean square error prediction, we prove that the new model provide better results than the classical log-Poisson model. This comparison can be extend to any other GLM in loss reserving.",
"genre": "research_article",
"id": "sg:pub.10.1007/s40815-018-0564-6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1135916",
"issn": [
"1562-2479",
"2199-3211"
],
"name": "International Journal of Fuzzy Systems",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "21"
}
],
"name": "A Fuzzy Least-Squares Estimation of a Hybrid Log-Poisson Regression and Its Goodness of Fit for Optimal Loss Reserves in Insurance",
"pagination": "1-15",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"e3a9fb8a4ea5b37a2c0280bac2ca0f3f9e50f54f0bab6a5414686bf336afe926"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40815-018-0564-6"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1110422270"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40815-018-0564-6",
"https://app.dimensions.ai/details/publication/pub.1110422270"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000006.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs40815-018-0564-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0564-6'
This table displays all metadata directly associated to this object as RDF triples.
159 TRIPLES
21 PREDICATES
53 URIs
19 LITERALS
7 BLANK NODES