New Operations on Generalized Hesitant Fuzzy Linguistic Term Sets for Linguistic Decision Making View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Mingming Kong, Zheng Pei, Fangling Ren, Fei Hao

ABSTRACT

Hesitant fuzzy linguistic term set is defined in hesitant fuzzy linguistic decision frameworks in which all decision makers are agreed on the primary linguistic scale and its membership functions; however, this situation does not always happen, because words mean different things to different people or there are some linguistic term sets with different semantics for different people. Hence, normalization of linguistic information is necessary. Inspired by normalizing linguistic information based on 2-tuple linguistic model, in this paper, the concept of generalized hesitant fuzzy linguistic term set is proposed when decision makers are not agreed on the primary linguistic scale and its membership functions, which is an extension of hesitant fuzzy linguistic term set. Then, t-norms and t-conorms are utilized to define new operations on generalized hesitant fuzzy linguistic term sets and their properties are discussed. Based on these new operations, the likelihood-based comparison relation of generalized hesitant fuzzy linguistic term sets is presented, which is an extension of the likelihood-based comparison relation of hesitant fuzzy linguistic term sets. Accordingly, the generalized hesitant fuzzy linguistic weighted average operator, generalized hesitant fuzzy linguistic weighted geometric operator, generalized hesitant fuzzy linguistic ordered weighted average operator and generalized hesitant fuzzy linguistic ordered weighted geometric operator are provided to fuse generalized hesitant fuzzy linguistic term sets in linguistic decision making. A case study is used to illustrate the practicality of the method based on generalized hesitant fuzzy linguistic term sets and compare with Lee and Chen’s method, Rodriguez’s method and Wei’s method. It seems that the method based on generalized hesitant fuzzy linguistic term sets is flexible and useful method for hesitant fuzzy linguistic decision making. More... »

PAGES

243-262

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40815-018-0540-1

DOI

http://dx.doi.org/10.1007/s40815-018-0540-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107215426


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xihua University", 
          "id": "https://www.grid.ac/institutes/grid.412983.5", 
          "name": [
            "Center for Radio Administration and Technology Development, Xihua University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "Mingming", 
        "id": "sg:person.016155273011.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155273011.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xihua University", 
          "id": "https://www.grid.ac/institutes/grid.412983.5", 
          "name": [
            "Center for Radio Administration and Technology Development, Xihua University, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pei", 
        "givenName": "Zheng", 
        "id": "sg:person.013366237373.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013366237373.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yan'an University", 
          "id": "https://www.grid.ac/institutes/grid.440747.4", 
          "name": [
            "College of Mathematics and Computer Science, Yan\u2019an University, Yan\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Fangling", 
        "id": "sg:person.016046257034.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046257034.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shaanxi Normal University", 
          "id": "https://www.grid.ac/institutes/grid.412498.2", 
          "name": [
            "School of Computer Science, Shaanxi Normal University, 710119, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Fei", 
        "id": "sg:person.010774253445.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010774253445.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ins.2017.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004977976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04711-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005976754", 
          "https://doi.org/10.1007/978-3-319-04711-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04711-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005976754", 
          "https://doi.org/10.1007/978-3-319-04711-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006604737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2211-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007659636", 
          "https://doi.org/10.1007/s00500-016-2211-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2211-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007659636", 
          "https://doi.org/10.1007/s00500-016-2211-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40815-015-0050-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007823246", 
          "https://doi.org/10.1007/s40815-015-0050-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007869835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007869835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010141683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010980019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010980019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2013.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016854903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2012.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018468763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021359106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(75)90036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021582385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(75)90036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021582385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025593560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1025931387", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9540-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025931387", 
          "https://doi.org/10.1007/978-94-015-9540-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9540-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025931387", 
          "https://doi.org/10.1007/978-94-015-9540-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0255(03)00072-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029919104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0255(03)00072-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029919104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ifs-151737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031144985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031186334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032331073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033726136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2014.04.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034083701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2012.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036216459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2011.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037170592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.09.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037630991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jal.2016.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038154267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2016.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040452050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2016.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040452050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2010.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041172979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(99)00319-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043284323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044081969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046214648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047031548", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5217-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047031548", 
          "https://doi.org/10.1007/978-1-4615-5217-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5217-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047031548", 
          "https://doi.org/10.1007/978-1-4615-5217-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047541973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048777410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2004.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049146813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.02.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049530726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2014.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049708198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049765674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079.2012.710442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053537632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054736534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054740068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.87068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.493904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.890332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2015.2413894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2006.876337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2009.2032172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2011.2170076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2013.2239650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2013.2245136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2013.2269144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2014.2360556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218488513500426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062977478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2017.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084082974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2017.2697403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085284872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/ijcis.2015.8.1.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087143881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/ijcis.2015.8.1.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087143881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219622017010015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087155512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2017.2724023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090628244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2017.2744605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091346839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/sym9120289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092907580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40815-017-0432-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099693742", 
          "https://doi.org/10.1007/s40815-017-0432-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2018.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100242065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2018.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100242065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2018.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100776107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/ijcis.11.1.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104280337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/ijcis.11.1.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104280337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109736695", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/978-94-91216-28-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109736695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-91216-28-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109736695", 
          "https://doi.org/10.2991/978-94-91216-28-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-91216-28-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109736695", 
          "https://doi.org/10.2991/978-94-91216-28-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Hesitant fuzzy linguistic term set is defined in hesitant fuzzy linguistic decision frameworks in which all decision makers are agreed on the primary linguistic scale and its membership functions; however, this situation does not always happen, because words mean different things to different people or there are some linguistic term sets with different semantics for different people. Hence, normalization of linguistic information is necessary. Inspired by normalizing linguistic information based on 2-tuple linguistic model, in this paper, the concept of generalized hesitant fuzzy linguistic term set is proposed when decision makers are not agreed on the primary linguistic scale and its membership functions, which is an extension of hesitant fuzzy linguistic term set. Then, t-norms and t-conorms are utilized to define new operations on generalized hesitant fuzzy linguistic term sets and their properties are discussed. Based on these new operations, the likelihood-based comparison relation of generalized hesitant fuzzy linguistic term sets is presented, which is an extension of the likelihood-based comparison relation of hesitant fuzzy linguistic term sets. Accordingly, the generalized hesitant fuzzy linguistic weighted average operator, generalized hesitant fuzzy linguistic weighted geometric operator, generalized hesitant fuzzy linguistic ordered weighted average operator and generalized hesitant fuzzy linguistic ordered weighted geometric operator are provided to fuse generalized hesitant fuzzy linguistic term sets in linguistic decision making. A case study is used to illustrate the practicality of the method based on generalized hesitant fuzzy linguistic term sets and compare with Lee and Chen\u2019s method, Rodriguez\u2019s method and Wei\u2019s method. It seems that the method based on generalized hesitant fuzzy linguistic term sets is flexible and useful method for hesitant fuzzy linguistic decision making.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40815-018-0540-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135916", 
        "issn": [
          "1562-2479", 
          "2199-3211"
        ], 
        "name": "International Journal of Fuzzy Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "New Operations on Generalized Hesitant Fuzzy Linguistic Term Sets for Linguistic Decision Making", 
    "pagination": "243-262", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ac38910c27ec6627364aa8d66d7ea24d66320e85c58fb5ff4d7c696b31f1c17f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40815-018-0540-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107215426"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40815-018-0540-1", 
      "https://app.dimensions.ai/details/publication/pub.1107215426"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68973_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40815-018-0540-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0540-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0540-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0540-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0540-1'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      94 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40815-018-0540-1 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N41d33dcd28d54ac08bff6b9336aa6cef
4 schema:citation sg:pub.10.1007/978-1-4615-5217-8
5 sg:pub.10.1007/978-3-319-04711-9
6 sg:pub.10.1007/978-94-015-9540-7
7 sg:pub.10.1007/s00500-016-2211-1
8 sg:pub.10.1007/s40815-015-0050-3
9 sg:pub.10.1007/s40815-017-0432-9
10 sg:pub.10.2991/978-94-91216-28-2
11 https://app.dimensions.ai/details/publication/pub.1025931387
12 https://app.dimensions.ai/details/publication/pub.1047031548
13 https://app.dimensions.ai/details/publication/pub.1109736695
14 https://doi.org/10.1002/int.20097
15 https://doi.org/10.1002/int.20418
16 https://doi.org/10.1002/int.21623
17 https://doi.org/10.1016/0020-0255(75)90036-5
18 https://doi.org/10.1016/j.asoc.2016.07.008
19 https://doi.org/10.1016/j.cor.2004.01.005
20 https://doi.org/10.1016/j.eswa.2015.02.017
21 https://doi.org/10.1016/j.fss.2013.05.008
22 https://doi.org/10.1016/j.inffus.2012.01.006
23 https://doi.org/10.1016/j.inffus.2016.04.005
24 https://doi.org/10.1016/j.inffus.2017.02.008
25 https://doi.org/10.1016/j.inffus.2018.01.013
26 https://doi.org/10.1016/j.ins.2010.11.024
27 https://doi.org/10.1016/j.ins.2013.04.006
28 https://doi.org/10.1016/j.ins.2013.07.023
29 https://doi.org/10.1016/j.ins.2013.07.027
30 https://doi.org/10.1016/j.ins.2014.02.012
31 https://doi.org/10.1016/j.ins.2014.02.125
32 https://doi.org/10.1016/j.ins.2014.05.012
33 https://doi.org/10.1016/j.ins.2014.09.061
34 https://doi.org/10.1016/j.ins.2015.12.016
35 https://doi.org/10.1016/j.ins.2016.04.006
36 https://doi.org/10.1016/j.ins.2016.06.003
37 https://doi.org/10.1016/j.ins.2016.06.021
38 https://doi.org/10.1016/j.ins.2017.01.033
39 https://doi.org/10.1016/j.jal.2016.11.005
40 https://doi.org/10.1016/j.knosys.2011.10.016
41 https://doi.org/10.1016/j.knosys.2012.02.004
42 https://doi.org/10.1016/j.knosys.2014.04.037
43 https://doi.org/10.1016/j.knosys.2014.12.009
44 https://doi.org/10.1016/j.knosys.2015.06.007
45 https://doi.org/10.1016/j.knosys.2016.06.005
46 https://doi.org/10.1016/j.knosys.2018.01.011
47 https://doi.org/10.1016/s0020-0255(03)00072-0
48 https://doi.org/10.1016/s0377-2217(99)00319-7
49 https://doi.org/10.1080/03081079.2012.710442
50 https://doi.org/10.1109/21.87068
51 https://doi.org/10.1109/91.493904
52 https://doi.org/10.1109/91.890332
53 https://doi.org/10.1109/tcyb.2015.2413894
54 https://doi.org/10.1109/tfuzz.2006.876337
55 https://doi.org/10.1109/tfuzz.2009.2032172
56 https://doi.org/10.1109/tfuzz.2011.2170076
57 https://doi.org/10.1109/tfuzz.2013.2239650
58 https://doi.org/10.1109/tfuzz.2013.2245136
59 https://doi.org/10.1109/tfuzz.2013.2269144
60 https://doi.org/10.1109/tfuzz.2014.2360556
61 https://doi.org/10.1109/tfuzz.2017.2697403
62 https://doi.org/10.1109/tfuzz.2017.2724023
63 https://doi.org/10.1109/tfuzz.2017.2744605
64 https://doi.org/10.1142/s0218488513500426
65 https://doi.org/10.1142/s0219622017010015
66 https://doi.org/10.2991/978-94-91216-28-2
67 https://doi.org/10.2991/ijcis.11.1.38
68 https://doi.org/10.2991/ijcis.2015.8.1.2
69 https://doi.org/10.3233/ifs-151737
70 https://doi.org/10.3390/sym9120289
71 schema:datePublished 2019-02
72 schema:datePublishedReg 2019-02-01
73 schema:description Hesitant fuzzy linguistic term set is defined in hesitant fuzzy linguistic decision frameworks in which all decision makers are agreed on the primary linguistic scale and its membership functions; however, this situation does not always happen, because words mean different things to different people or there are some linguistic term sets with different semantics for different people. Hence, normalization of linguistic information is necessary. Inspired by normalizing linguistic information based on 2-tuple linguistic model, in this paper, the concept of generalized hesitant fuzzy linguistic term set is proposed when decision makers are not agreed on the primary linguistic scale and its membership functions, which is an extension of hesitant fuzzy linguistic term set. Then, t-norms and t-conorms are utilized to define new operations on generalized hesitant fuzzy linguistic term sets and their properties are discussed. Based on these new operations, the likelihood-based comparison relation of generalized hesitant fuzzy linguistic term sets is presented, which is an extension of the likelihood-based comparison relation of hesitant fuzzy linguistic term sets. Accordingly, the generalized hesitant fuzzy linguistic weighted average operator, generalized hesitant fuzzy linguistic weighted geometric operator, generalized hesitant fuzzy linguistic ordered weighted average operator and generalized hesitant fuzzy linguistic ordered weighted geometric operator are provided to fuse generalized hesitant fuzzy linguistic term sets in linguistic decision making. A case study is used to illustrate the practicality of the method based on generalized hesitant fuzzy linguistic term sets and compare with Lee and Chen’s method, Rodriguez’s method and Wei’s method. It seems that the method based on generalized hesitant fuzzy linguistic term sets is flexible and useful method for hesitant fuzzy linguistic decision making.
74 schema:genre research_article
75 schema:inLanguage en
76 schema:isAccessibleForFree false
77 schema:isPartOf N3d0d75a75cd44eceb1b0f30dd20641a0
78 N5b17da6d630349b5a2e8d5ec532b344a
79 sg:journal.1135916
80 schema:name New Operations on Generalized Hesitant Fuzzy Linguistic Term Sets for Linguistic Decision Making
81 schema:pagination 243-262
82 schema:productId N06f253872a0a4c42ac9f1a27e572acec
83 N20a5bdf4fd3b434cb451fe131166ee23
84 N4ee7a8a5071b4d74967323259ea61a9b
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107215426
86 https://doi.org/10.1007/s40815-018-0540-1
87 schema:sdDatePublished 2019-04-11T13:25
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nc7634dbae1f2477fa3b39764f40e3068
90 schema:url https://link.springer.com/10.1007%2Fs40815-018-0540-1
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N06f253872a0a4c42ac9f1a27e572acec schema:name dimensions_id
95 schema:value pub.1107215426
96 rdf:type schema:PropertyValue
97 N20a5bdf4fd3b434cb451fe131166ee23 schema:name readcube_id
98 schema:value ac38910c27ec6627364aa8d66d7ea24d66320e85c58fb5ff4d7c696b31f1c17f
99 rdf:type schema:PropertyValue
100 N2a82dbc3cb2e4c0cb1daa2a5384ab209 rdf:first sg:person.016046257034.84
101 rdf:rest Nbf40d28e91604256a75c15e82b5f99a4
102 N3d0d75a75cd44eceb1b0f30dd20641a0 schema:volumeNumber 21
103 rdf:type schema:PublicationVolume
104 N41d33dcd28d54ac08bff6b9336aa6cef rdf:first sg:person.016155273011.98
105 rdf:rest Nf0df9e88ce904f20b75bb698fb51d19c
106 N4ee7a8a5071b4d74967323259ea61a9b schema:name doi
107 schema:value 10.1007/s40815-018-0540-1
108 rdf:type schema:PropertyValue
109 N5b17da6d630349b5a2e8d5ec532b344a schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 Nbf40d28e91604256a75c15e82b5f99a4 rdf:first sg:person.010774253445.74
112 rdf:rest rdf:nil
113 Nc7634dbae1f2477fa3b39764f40e3068 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nf0df9e88ce904f20b75bb698fb51d19c rdf:first sg:person.013366237373.52
116 rdf:rest N2a82dbc3cb2e4c0cb1daa2a5384ab209
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information Systems
122 rdf:type schema:DefinedTerm
123 sg:journal.1135916 schema:issn 1562-2479
124 2199-3211
125 schema:name International Journal of Fuzzy Systems
126 rdf:type schema:Periodical
127 sg:person.010774253445.74 schema:affiliation https://www.grid.ac/institutes/grid.412498.2
128 schema:familyName Hao
129 schema:givenName Fei
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010774253445.74
131 rdf:type schema:Person
132 sg:person.013366237373.52 schema:affiliation https://www.grid.ac/institutes/grid.412983.5
133 schema:familyName Pei
134 schema:givenName Zheng
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013366237373.52
136 rdf:type schema:Person
137 sg:person.016046257034.84 schema:affiliation https://www.grid.ac/institutes/grid.440747.4
138 schema:familyName Ren
139 schema:givenName Fangling
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046257034.84
141 rdf:type schema:Person
142 sg:person.016155273011.98 schema:affiliation https://www.grid.ac/institutes/grid.412983.5
143 schema:familyName Kong
144 schema:givenName Mingming
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155273011.98
146 rdf:type schema:Person
147 sg:pub.10.1007/978-1-4615-5217-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047031548
148 https://doi.org/10.1007/978-1-4615-5217-8
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-319-04711-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005976754
151 https://doi.org/10.1007/978-3-319-04711-9
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/978-94-015-9540-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025931387
154 https://doi.org/10.1007/978-94-015-9540-7
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00500-016-2211-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007659636
157 https://doi.org/10.1007/s00500-016-2211-1
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s40815-015-0050-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007823246
160 https://doi.org/10.1007/s40815-015-0050-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s40815-017-0432-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099693742
163 https://doi.org/10.1007/s40815-017-0432-9
164 rdf:type schema:CreativeWork
165 sg:pub.10.2991/978-94-91216-28-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109736695
166 https://doi.org/10.2991/978-94-91216-28-2
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1025931387 schema:CreativeWork
169 https://app.dimensions.ai/details/publication/pub.1047031548 schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1109736695 schema:CreativeWork
171 https://doi.org/10.1002/int.20097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007869835
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/int.20418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010980019
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/int.21623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010141683
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0020-0255(75)90036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021582385
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.asoc.2016.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031186334
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.cor.2004.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049146813
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.eswa.2015.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032331073
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.fss.2013.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016854903
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.inffus.2012.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018468763
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.inffus.2016.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040452050
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.inffus.2017.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084082974
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.inffus.2018.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100776107
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ins.2010.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041172979
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.ins.2013.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049765674
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ins.2013.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046214648
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.ins.2013.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033726136
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ins.2014.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021359106
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.ins.2014.02.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049530726
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.ins.2014.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044081969
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.ins.2014.09.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037630991
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.ins.2015.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025593560
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.ins.2016.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006604737
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.ins.2016.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047541973
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.ins.2016.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054736534
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.ins.2017.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004977976
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.jal.2016.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038154267
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.knosys.2011.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037170592
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.knosys.2012.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036216459
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.knosys.2014.04.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034083701
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.knosys.2014.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049708198
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.knosys.2015.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048777410
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.knosys.2016.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054740068
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.knosys.2018.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100242065
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0020-0255(03)00072-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029919104
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0377-2217(99)00319-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043284323
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1080/03081079.2012.710442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053537632
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/21.87068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122429
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1109/91.493904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247769
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/91.890332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248039
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1109/tcyb.2015.2413894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579971
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1109/tfuzz.2006.876337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605907
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1109/tfuzz.2009.2032172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606298
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/tfuzz.2011.2170076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606507
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/tfuzz.2013.2239650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606665
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/tfuzz.2013.2245136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606683
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/tfuzz.2013.2269144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606727
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/tfuzz.2014.2360556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606917
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1109/tfuzz.2017.2697403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085284872
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1109/tfuzz.2017.2724023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090628244
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1109/tfuzz.2017.2744605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091346839
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1142/s0218488513500426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062977478
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1142/s0219622017010015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087155512
274 rdf:type schema:CreativeWork
275 https://doi.org/10.2991/978-94-91216-28-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109736695
276 rdf:type schema:CreativeWork
277 https://doi.org/10.2991/ijcis.11.1.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104280337
278 rdf:type schema:CreativeWork
279 https://doi.org/10.2991/ijcis.2015.8.1.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087143881
280 rdf:type schema:CreativeWork
281 https://doi.org/10.3233/ifs-151737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031144985
282 rdf:type schema:CreativeWork
283 https://doi.org/10.3390/sym9120289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092907580
284 rdf:type schema:CreativeWork
285 https://www.grid.ac/institutes/grid.412498.2 schema:alternateName Shaanxi Normal University
286 schema:name School of Computer Science, Shaanxi Normal University, 710119, Xi’an, China
287 rdf:type schema:Organization
288 https://www.grid.ac/institutes/grid.412983.5 schema:alternateName Xihua University
289 schema:name Center for Radio Administration and Technology Development, Xihua University, Chengdu, Sichuan, China
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.440747.4 schema:alternateName Yan'an University
292 schema:name College of Mathematics and Computer Science, Yan’an University, Yan’an, Shaanxi, China
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...