Hierarchical Fuzzy Sliding-Mode Adaptive Control for the Trajectory Tracking of Differential-Driven Mobile Robots View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Hsiu-Ming Wu, Mansour Karkoub

ABSTRACT

The trajectory tracking of a differential-driven mobile robot (DDMR) with uncertainties and unknown dynamics is investigated using a hierarchical fuzzy sliding-mode adaptive controller (HFSMAC). First, the position error between the actual DDMR and the virtual reference DDMR with respect to the world frame is determined. Based on the aforementioned position error, fuzzy sliding-mode control is used to generate the virtual reference input and attain position tracking. It is well known that the performance and stability of a closed-loop system often deteriorate in the presence of uncertainties. Therefore, a function approximation technique (FAT)-based adaptive controller is used here to learn the unknown dynamics and deals with the external uncertainties via a set of Fourier series to achieve velocity tracking. The proposed HFSMAC has been verified to lead to good robustness levels, effective learning, and accurate trajectory tracking. Computer simulations have been conducted to validate the theoretical developments confirming the efficacy and robustness of the proposed scheme. Finally, a comparative study with a PID controller is presented to further prove the superior performance of the proposed HFSMAC. More... »

PAGES

33-49

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40815-018-0531-2

DOI

http://dx.doi.org/10.1007/s40815-018-0531-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107849547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Chin-Yi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.454303.5", 
          "name": [
            "Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Hsiu-Ming", 
        "id": "sg:person.015652433022.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652433022.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University at Qatar", 
          "id": "https://www.grid.ac/institutes/grid.412392.f", 
          "name": [
            "Department of Mechanical Engineering, Texas A&M University at Qatar, Education City, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karkoub", 
        "givenName": "Mansour", 
        "id": "sg:person.0612201635.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612201635.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00207170010003441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006706778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-013-0096-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011441051", 
          "https://doi.org/10.1007/s12555-013-0096-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/5997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029008478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4563(199703)14:3<149::aid-rob1>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043757381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-012-0341-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044654153", 
          "https://doi.org/10.1007/s12555-012-0341-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2008.0061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056822645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2008.0061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056822645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2008.0103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056822650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2008.0103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056822650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2008.0528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056822778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2008.0528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056822778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2009.0617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2009.0617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2010.0667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2010.0678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2012.0750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta:20050435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056824757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.701173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.964690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061246860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2010.2049776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061477632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2016.2632718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061568663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2004.826968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061572106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2008.2004349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061572626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2015.2388734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061573842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2011.2176738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2006.888806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061622724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2007.893054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061622797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2009.2030205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061624076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2009.2030766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061624095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2013.2282594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061626341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2010.2054101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061692644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2011.2138490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2012.2206869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2010.2052605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2016.2646719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079393071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1990.126006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086263799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2017.0395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092371312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2008.4543577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093710515"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The trajectory tracking of a differential-driven mobile robot (DDMR) with uncertainties and unknown dynamics is investigated using a hierarchical fuzzy sliding-mode adaptive controller (HFSMAC). First, the position error between the actual DDMR and the virtual reference DDMR with respect to the world frame is determined. Based on the aforementioned position error, fuzzy sliding-mode control is used to generate the virtual reference input and attain position tracking. It is well known that the performance and stability of a closed-loop system often deteriorate in the presence of uncertainties. Therefore, a function approximation technique (FAT)-based adaptive controller is used here to learn the unknown dynamics and deals with the external uncertainties via a set of Fourier series to achieve velocity tracking. The proposed HFSMAC has been verified to lead to good robustness levels, effective learning, and accurate trajectory tracking. Computer simulations have been conducted to validate the theoretical developments confirming the efficacy and robustness of the proposed scheme. Finally, a comparative study with a PID controller is presented to further prove the superior performance of the proposed HFSMAC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40815-018-0531-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135916", 
        "issn": [
          "1562-2479", 
          "2199-3211"
        ], 
        "name": "International Journal of Fuzzy Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Hierarchical Fuzzy Sliding-Mode Adaptive Control for the Trajectory Tracking of Differential-Driven Mobile Robots", 
    "pagination": "33-49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "57f6cb4a9591ba9959a36d7bd7b0ce4071b4160ac443c3d7bdb4bb64c68e901f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40815-018-0531-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107849547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40815-018-0531-2", 
      "https://app.dimensions.ai/details/publication/pub.1107849547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68956_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40815-018-0531-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0531-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0531-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0531-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-0531-2'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40815-018-0531-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbd5626a6dc5d431b9dc9e8647ee313be
4 schema:citation sg:pub.10.1007/s12555-012-0341-5
5 sg:pub.10.1007/s12555-013-0096-7
6 https://doi.org/10.1002/(sici)1097-4563(199703)14:3<149::aid-rob1>3.0.co;2-r
7 https://doi.org/10.1049/iet-cta.2008.0061
8 https://doi.org/10.1049/iet-cta.2008.0103
9 https://doi.org/10.1049/iet-cta.2008.0528
10 https://doi.org/10.1049/iet-cta.2009.0617
11 https://doi.org/10.1049/iet-cta.2010.0667
12 https://doi.org/10.1049/iet-cta.2010.0678
13 https://doi.org/10.1049/iet-cta.2012.0750
14 https://doi.org/10.1049/iet-cta.2017.0395
15 https://doi.org/10.1049/iet-cta:20050435
16 https://doi.org/10.1080/00207170010003441
17 https://doi.org/10.1109/72.701173
18 https://doi.org/10.1109/9.964690
19 https://doi.org/10.1109/robot.1990.126006
20 https://doi.org/10.1109/robot.2008.4543577
21 https://doi.org/10.1109/tac.2010.2049776
22 https://doi.org/10.1109/tcsi.2016.2632718
23 https://doi.org/10.1109/tcst.2004.826968
24 https://doi.org/10.1109/tcst.2008.2004349
25 https://doi.org/10.1109/tcst.2015.2388734
26 https://doi.org/10.1109/tcyb.2016.2646719
27 https://doi.org/10.1109/tfuzz.2011.2176738
28 https://doi.org/10.1109/tie.2006.888806
29 https://doi.org/10.1109/tie.2007.893054
30 https://doi.org/10.1109/tie.2009.2030205
31 https://doi.org/10.1109/tie.2009.2030766
32 https://doi.org/10.1109/tie.2013.2282594
33 https://doi.org/10.1109/tmech.2010.2054101
34 https://doi.org/10.1109/tro.2011.2138490
35 https://doi.org/10.1109/tro.2012.2206869
36 https://doi.org/10.1109/tsmca.2010.2052605
37 https://doi.org/10.5772/5997
38 schema:datePublished 2019-02
39 schema:datePublishedReg 2019-02-01
40 schema:description The trajectory tracking of a differential-driven mobile robot (DDMR) with uncertainties and unknown dynamics is investigated using a hierarchical fuzzy sliding-mode adaptive controller (HFSMAC). First, the position error between the actual DDMR and the virtual reference DDMR with respect to the world frame is determined. Based on the aforementioned position error, fuzzy sliding-mode control is used to generate the virtual reference input and attain position tracking. It is well known that the performance and stability of a closed-loop system often deteriorate in the presence of uncertainties. Therefore, a function approximation technique (FAT)-based adaptive controller is used here to learn the unknown dynamics and deals with the external uncertainties via a set of Fourier series to achieve velocity tracking. The proposed HFSMAC has been verified to lead to good robustness levels, effective learning, and accurate trajectory tracking. Computer simulations have been conducted to validate the theoretical developments confirming the efficacy and robustness of the proposed scheme. Finally, a comparative study with a PID controller is presented to further prove the superior performance of the proposed HFSMAC.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N847b087cedff40a3913e1d727d097ca8
45 Nf22cdd629acc4dafb6d985dfb58b19e0
46 sg:journal.1135916
47 schema:name Hierarchical Fuzzy Sliding-Mode Adaptive Control for the Trajectory Tracking of Differential-Driven Mobile Robots
48 schema:pagination 33-49
49 schema:productId N03b74d5ebf5b48219dc527baafab68e3
50 N1abb1e9d08d74f90a809b547dd4112fb
51 N5bff8fee14a947589f82d745fd6cbbeb
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849547
53 https://doi.org/10.1007/s40815-018-0531-2
54 schema:sdDatePublished 2019-04-11T13:23
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ncc789d73bd554716ab8c5144f423b9b1
57 schema:url https://link.springer.com/10.1007%2Fs40815-018-0531-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N03b74d5ebf5b48219dc527baafab68e3 schema:name readcube_id
62 schema:value 57f6cb4a9591ba9959a36d7bd7b0ce4071b4160ac443c3d7bdb4bb64c68e901f
63 rdf:type schema:PropertyValue
64 N1abb1e9d08d74f90a809b547dd4112fb schema:name dimensions_id
65 schema:value pub.1107849547
66 rdf:type schema:PropertyValue
67 N5bff8fee14a947589f82d745fd6cbbeb schema:name doi
68 schema:value 10.1007/s40815-018-0531-2
69 rdf:type schema:PropertyValue
70 N5c03e739ace2434eac0b288eaa760c77 rdf:first sg:person.0612201635.10
71 rdf:rest rdf:nil
72 N847b087cedff40a3913e1d727d097ca8 schema:volumeNumber 21
73 rdf:type schema:PublicationVolume
74 Nbd5626a6dc5d431b9dc9e8647ee313be rdf:first sg:person.015652433022.97
75 rdf:rest N5c03e739ace2434eac0b288eaa760c77
76 Ncc789d73bd554716ab8c5144f423b9b1 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nf22cdd629acc4dafb6d985dfb58b19e0 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1135916 schema:issn 1562-2479
87 2199-3211
88 schema:name International Journal of Fuzzy Systems
89 rdf:type schema:Periodical
90 sg:person.015652433022.97 schema:affiliation https://www.grid.ac/institutes/grid.454303.5
91 schema:familyName Wu
92 schema:givenName Hsiu-Ming
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652433022.97
94 rdf:type schema:Person
95 sg:person.0612201635.10 schema:affiliation https://www.grid.ac/institutes/grid.412392.f
96 schema:familyName Karkoub
97 schema:givenName Mansour
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612201635.10
99 rdf:type schema:Person
100 sg:pub.10.1007/s12555-012-0341-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044654153
101 https://doi.org/10.1007/s12555-012-0341-5
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s12555-013-0096-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011441051
104 https://doi.org/10.1007/s12555-013-0096-7
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/(sici)1097-4563(199703)14:3<149::aid-rob1>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1043757381
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1049/iet-cta.2008.0061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056822645
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1049/iet-cta.2008.0103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056822650
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1049/iet-cta.2008.0528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056822778
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1049/iet-cta.2009.0617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823025
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1049/iet-cta.2010.0667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823238
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1049/iet-cta.2010.0678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823242
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1049/iet-cta.2012.0750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823631
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1049/iet-cta.2017.0395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092371312
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1049/iet-cta:20050435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056824757
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/00207170010003441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006706778
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/72.701173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219048
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/9.964690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061246860
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/robot.1990.126006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086263799
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/robot.2008.4543577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093710515
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tac.2010.2049776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061477632
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tcsi.2016.2632718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061568663
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tcst.2004.826968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061572106
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tcst.2008.2004349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061572626
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tcst.2015.2388734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061573842
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tcyb.2016.2646719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079393071
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tfuzz.2011.2176738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606534
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tie.2006.888806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061622724
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tie.2007.893054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061622797
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tie.2009.2030205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624076
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tie.2009.2030766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624095
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tie.2013.2282594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061626341
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tmech.2010.2054101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061692644
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tro.2011.2138490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785264
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tro.2012.2206869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785418
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tsmca.2010.2052605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795657
167 rdf:type schema:CreativeWork
168 https://doi.org/10.5772/5997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029008478
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.412392.f schema:alternateName Texas A&M University at Qatar
171 schema:name Department of Mechanical Engineering, Texas A&M University at Qatar, Education City, Qatar
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.454303.5 schema:alternateName National Chin-Yi University of Technology
174 schema:name Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan, ROC
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...