Uncertainty Management by Feature Space Tuning for Single-Trial P300 Detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Reshma Kar, Pratyusha Rakshit, Amit Konar, Aruna Chakraborty

ABSTRACT

The P300 is a widely studied event-related potential, which allows non-muscular communication. In P300 induced brain–computer interfacing, one often comes across the challenge of modeling uncertainties due to fluctuations in EEG feature values within a specific session and across several sessions of EEG recordings of a specific subject. The relevance of fuzzy systems in this domain thus cannot be undermined. In this paper, the authors propose (a) an interval type-2 fuzzy classifier for detecting P300 occurrences and (b) a feature tuning algorithm for selection of Autoregressive Yule Parameter features of optimal lag-length corresponding to individual electrodes with an aim to maximize a classifier-oriented performance metric. The classifier performance metric is formulated as a simple objective function tailored to the classifier performance in terms of low uncertainty and high classification accuracy. The relationship between the proposed objective function value and classification accuracy is found to be statistically significant over iterations. The experimental results show that the proposed algorithm achieves an average accuracy of 90.8%. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40815-018-00601-x

DOI

http://dx.doi.org/10.1007/s40815-018-00601-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111763370


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kar", 
        "givenName": "Reshma", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rakshit", 
        "givenName": "Pratyusha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Science and Engineering, St. Thomas\u2019 College of Engineering and Technology, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborty", 
        "givenName": "Aruna", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2007.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000486328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-980x(97)00070-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001165436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68830-3_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001482033", 
          "https://doi.org/10.1007/978-3-540-68830-3_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68830-3_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001482033", 
          "https://doi.org/10.1007/978-3-540-68830-3_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(88)90149-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005445238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(88)90149-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005445238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/937503.937505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008740328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018506637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15326942dn2702_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021117529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-00969-8_57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021430971", 
          "https://doi.org/10.1007/978-3-319-00969-8_57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(90)90036-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021604654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(90)90036-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021604654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2008.04122.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024447883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2008.04122.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024447883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(94)90051-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028705869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(94)90051-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028705869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-4429-6_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033883801", 
          "https://doi.org/10.1007/978-1-4615-4429-6_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-4429-6_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033883801", 
          "https://doi.org/10.1007/978-1-4615-4429-6_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-613x(92)90020-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035862873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-613x(92)90020-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035862873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00999142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037631847", 
          "https://doi.org/10.1007/bf00999142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2006.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038943124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-015-0429-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041271016", 
          "https://doi.org/10.1007/s10548-015-0429-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2008.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043491132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2008.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046242022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04617-9_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050548424", 
          "https://doi.org/10.1007/978-3-642-04617-9_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/4/2/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053010107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/86.895946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061241441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.995115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2004.826698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2010.2059031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2016.2637934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061607262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/thms.2014.2344003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2003.814441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061739973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2009.2020347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5415.739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062565071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5333745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077993745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fuzzy.2011.6007689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093557579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2014.6889939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094538167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icbme.2012.6519702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094796862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/syscon.2015.7116757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095360031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iraniancee.2013.6599576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095387258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cne.2003.1196906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095393629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2014.6889400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095401766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fuzz-ieee.2017.8015660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095790222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2016.7744411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095823818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/usbereit.2018.8384558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104602364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2018.2855804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105590693"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The P300 is a widely studied event-related potential, which allows non-muscular communication. In P300 induced brain\u2013computer interfacing, one often comes across the challenge of modeling uncertainties due to fluctuations in EEG feature values within a specific session and across several sessions of EEG recordings of a specific subject. The relevance of fuzzy systems in this domain thus cannot be undermined. In this paper, the authors propose (a) an interval type-2 fuzzy classifier for detecting P300 occurrences and (b) a feature tuning algorithm for selection of Autoregressive Yule Parameter features of optimal lag-length corresponding to individual electrodes with an aim to maximize a classifier-oriented performance metric. The classifier performance metric is formulated as a simple objective function tailored to the classifier performance in terms of low uncertainty and high classification accuracy. The relationship between the proposed objective function value and classification accuracy is found to be statistically significant over iterations. The experimental results show that the proposed algorithm achieves an average accuracy of 90.8%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40815-018-00601-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135916", 
        "issn": [
          "1562-2479", 
          "2199-3211"
        ], 
        "name": "International Journal of Fuzzy Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Uncertainty Management by Feature Space Tuning for Single-Trial P300 Detection", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "638519bfb1ff7dce180cffa5f8d80defc7733eca94e80cfec2db37cacc2da476"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40815-018-00601-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111763370"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40815-018-00601-x", 
      "https://app.dimensions.ai/details/publication/pub.1111763370"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40815-018-00601-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-00601-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-00601-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-00601-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40815-018-00601-x'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40815-018-00601-x schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nbce5c0b838ab4e578e6f71bd5fe7b472
4 schema:citation sg:pub.10.1007/978-1-4615-4429-6_11
5 sg:pub.10.1007/978-3-319-00969-8_57
6 sg:pub.10.1007/978-3-540-68830-3_7
7 sg:pub.10.1007/978-3-642-04617-9_43
8 sg:pub.10.1007/bf00999142
9 sg:pub.10.1007/s10548-015-0429-3
10 https://doi.org/10.1016/0013-4694(88)90149-6
11 https://doi.org/10.1016/0168-5597(90)90036-d
12 https://doi.org/10.1016/0168-5597(94)90051-5
13 https://doi.org/10.1016/0888-613x(92)90020-z
14 https://doi.org/10.1016/j.artmed.2008.06.002
15 https://doi.org/10.1016/j.clinph.2005.07.024
16 https://doi.org/10.1016/j.clinph.2006.08.013
17 https://doi.org/10.1016/j.cmpb.2008.10.001
18 https://doi.org/10.1016/j.jneumeth.2007.03.005
19 https://doi.org/10.1016/s0924-980x(97)00070-2
20 https://doi.org/10.1088/1741-2560/4/2/r01
21 https://doi.org/10.1109/86.895946
22 https://doi.org/10.1109/91.995115
23 https://doi.org/10.1109/cec.2016.7744411
24 https://doi.org/10.1109/cne.2003.1196906
25 https://doi.org/10.1109/fuzz-ieee.2017.8015660
26 https://doi.org/10.1109/fuzzy.2011.6007689
27 https://doi.org/10.1109/icbme.2012.6519702
28 https://doi.org/10.1109/iembs.2009.5333745
29 https://doi.org/10.1109/ijcnn.2014.6889400
30 https://doi.org/10.1109/ijcnn.2014.6889939
31 https://doi.org/10.1109/iraniancee.2013.6599576
32 https://doi.org/10.1109/syscon.2015.7116757
33 https://doi.org/10.1109/tbme.2004.826698
34 https://doi.org/10.1109/tevc.2010.2059031
35 https://doi.org/10.1109/tfuzz.2016.2637934
36 https://doi.org/10.1109/thms.2014.2344003
37 https://doi.org/10.1109/tnsre.2003.814441
38 https://doi.org/10.1109/tnsre.2018.2855804
39 https://doi.org/10.1109/tpami.2010.125
40 https://doi.org/10.1109/tro.2009.2020347
41 https://doi.org/10.1109/usbereit.2018.8384558
42 https://doi.org/10.1111/j.1749-6632.2008.04122.x
43 https://doi.org/10.1126/science.284.5415.739
44 https://doi.org/10.1145/937503.937505
45 https://doi.org/10.1207/s15326942dn2702_1
46 schema:datePublished 2019-04
47 schema:datePublishedReg 2019-04-01
48 schema:description The P300 is a widely studied event-related potential, which allows non-muscular communication. In P300 induced brain–computer interfacing, one often comes across the challenge of modeling uncertainties due to fluctuations in EEG feature values within a specific session and across several sessions of EEG recordings of a specific subject. The relevance of fuzzy systems in this domain thus cannot be undermined. In this paper, the authors propose (a) an interval type-2 fuzzy classifier for detecting P300 occurrences and (b) a feature tuning algorithm for selection of Autoregressive Yule Parameter features of optimal lag-length corresponding to individual electrodes with an aim to maximize a classifier-oriented performance metric. The classifier performance metric is formulated as a simple objective function tailored to the classifier performance in terms of low uncertainty and high classification accuracy. The relationship between the proposed objective function value and classification accuracy is found to be statistically significant over iterations. The experimental results show that the proposed algorithm achieves an average accuracy of 90.8%.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N094161afed2b4476a5ff3a42f318c5ef
53 Nfd1bb312c2a64c9097c78d243dc6adc6
54 sg:journal.1135916
55 schema:name Uncertainty Management by Feature Space Tuning for Single-Trial P300 Detection
56 schema:pagination 1-14
57 schema:productId N64f0e52afee74d53aaa665596c57818b
58 Ne8c716dc68b848a8a916342bb28e72a0
59 Nfe9eb71f129d46c5aa5afc0a8d403020
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111763370
61 https://doi.org/10.1007/s40815-018-00601-x
62 schema:sdDatePublished 2019-04-11T14:02
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N1819b1908fb94c2ea8bc4330cdd03dbf
65 schema:url https://link.springer.com/10.1007%2Fs40815-018-00601-x
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N03fb620168df4fed86c7575e1182bbba rdf:first N17dde87ca02b4cbaaab92316b9850f0f
70 rdf:rest N58cdc50d3e7d488fa55f0acc9c0194de
71 N094161afed2b4476a5ff3a42f318c5ef schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 N155566a81b0a43e393c6c30e9855b996 schema:affiliation N339235e1439e4dd08a6096d8e48fce6e
74 schema:familyName Chakraborty
75 schema:givenName Aruna
76 rdf:type schema:Person
77 N17dde87ca02b4cbaaab92316b9850f0f schema:affiliation https://www.grid.ac/institutes/grid.216499.1
78 schema:familyName Rakshit
79 schema:givenName Pratyusha
80 rdf:type schema:Person
81 N1819b1908fb94c2ea8bc4330cdd03dbf schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N339235e1439e4dd08a6096d8e48fce6e schema:name Department of Computer Science and Engineering, St. Thomas’ College of Engineering and Technology, Kolkata, India
84 rdf:type schema:Organization
85 N4baeb0a5e4bb4b1ebfb0a4542f7d5af8 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
86 schema:familyName Konar
87 schema:givenName Amit
88 rdf:type schema:Person
89 N58cdc50d3e7d488fa55f0acc9c0194de rdf:first N4baeb0a5e4bb4b1ebfb0a4542f7d5af8
90 rdf:rest N8cf151108a6646a1a866d85e9913fbe5
91 N64f0e52afee74d53aaa665596c57818b schema:name readcube_id
92 schema:value 638519bfb1ff7dce180cffa5f8d80defc7733eca94e80cfec2db37cacc2da476
93 rdf:type schema:PropertyValue
94 N847e09ae455145548dad25b0102cf895 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
95 schema:familyName Kar
96 schema:givenName Reshma
97 rdf:type schema:Person
98 N8cf151108a6646a1a866d85e9913fbe5 rdf:first N155566a81b0a43e393c6c30e9855b996
99 rdf:rest rdf:nil
100 Nbce5c0b838ab4e578e6f71bd5fe7b472 rdf:first N847e09ae455145548dad25b0102cf895
101 rdf:rest N03fb620168df4fed86c7575e1182bbba
102 Ne8c716dc68b848a8a916342bb28e72a0 schema:name dimensions_id
103 schema:value pub.1111763370
104 rdf:type schema:PropertyValue
105 Nfd1bb312c2a64c9097c78d243dc6adc6 schema:volumeNumber 21
106 rdf:type schema:PublicationVolume
107 Nfe9eb71f129d46c5aa5afc0a8d403020 schema:name doi
108 schema:value 10.1007/s40815-018-00601-x
109 rdf:type schema:PropertyValue
110 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
111 schema:name Medical and Health Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
114 schema:name Neurosciences
115 rdf:type schema:DefinedTerm
116 sg:journal.1135916 schema:issn 1562-2479
117 2199-3211
118 schema:name International Journal of Fuzzy Systems
119 rdf:type schema:Periodical
120 sg:pub.10.1007/978-1-4615-4429-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033883801
121 https://doi.org/10.1007/978-1-4615-4429-6_11
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-319-00969-8_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021430971
124 https://doi.org/10.1007/978-3-319-00969-8_57
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-540-68830-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001482033
127 https://doi.org/10.1007/978-3-540-68830-3_7
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-3-642-04617-9_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050548424
130 https://doi.org/10.1007/978-3-642-04617-9_43
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00999142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037631847
133 https://doi.org/10.1007/bf00999142
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10548-015-0429-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041271016
136 https://doi.org/10.1007/s10548-015-0429-3
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0013-4694(88)90149-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005445238
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0168-5597(90)90036-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1021604654
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0168-5597(94)90051-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028705869
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0888-613x(92)90020-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035862873
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.artmed.2008.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491132
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.clinph.2005.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018506637
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.clinph.2006.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038943124
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cmpb.2008.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046242022
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jneumeth.2007.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000486328
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0924-980x(97)00070-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001165436
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/1741-2560/4/2/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053010107
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/86.895946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061241441
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/91.995115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248133
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/cec.2016.7744411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095823818
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/cne.2003.1196906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095393629
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/fuzz-ieee.2017.8015660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095790222
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/fuzzy.2011.6007689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093557579
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/icbme.2012.6519702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094796862
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/iembs.2009.5333745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077993745
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/ijcnn.2014.6889400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095401766
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/ijcnn.2014.6889939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094538167
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/iraniancee.2013.6599576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095387258
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/syscon.2015.7116757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095360031
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tbme.2004.826698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526105
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tevc.2010.2059031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605002
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tfuzz.2016.2637934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061607262
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/thms.2014.2344003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614903
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/tnsre.2003.814441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061739973
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/tnsre.2018.2855804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105590693
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/tpami.2010.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743849
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/tro.2009.2020347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785045
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/usbereit.2018.8384558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104602364
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1749-6632.2008.04122.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024447883
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.284.5415.739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565071
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1145/937503.937505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008740328
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1207/s15326942dn2702_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021117529
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
211 schema:name Artificial Intelligence Laboratory, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...