Modelling and analysis of the effects of aerosols in making artificial rain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-10-07

AUTHORS

A. K. Misra, Amita Tripathi, Ram Naresh, J. B. Shukla

ABSTRACT

To overcome the water crisis for irrigation and other purposes, in this paper, we propose a non-linear mathematical model for artificial rain making by considering five dependent variables namely, water vapor density, densities of cloud droplets of small and large sizes, density of rain drops and cumulative concentration of mixture of aerosols of different sizes. It is assumed that these aerosols are conducive to the process of rain making, i.e. (a) the formation of small size cloud droplets from water vapors through the processes of nucleation and condensation, (b) changing them into large size cloud droplets through the processes of condensation, agglomeration, etc., and (c) changing these large cloud droplets into rain drops. The proposed model is analyzed using stability theory of differential equations. It is found that only one equilibrium is feasible and sufficient conditions for stability of such equilibrium are obtained. It is shown that the intensity of rainfall increases as the cumulative concentration of externally introduced aerosols in the atmosphere increases. Analysis reveals that for the continuous rainfall, it is necessary that water vapors must be continuously formed in the atmosphere. The numerical simulation of the model supports the analytical results. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40808-016-0228-1

DOI

http://dx.doi.org/10.1007/s40808-016-0228-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017651572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Institute of Science, Banaras Hindu University, 221 005, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Department of Mathematics, Institute of Science, Banaras Hindu University, 221 005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Misra", 
        "givenName": "A. K.", 
        "id": "sg:person.012420157467.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012420157467.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Institute of Science, Banaras Hindu University, 221 005, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Department of Mathematics, Institute of Science, Banaras Hindu University, 221 005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tripathi", 
        "givenName": "Amita", 
        "id": "sg:person.013621730353.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621730353.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, H.B. Technological Institute, 208 002, Kanpur, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, H.B. Technological Institute, 208 002, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naresh", 
        "givenName": "Ram", 
        "id": "sg:person.07354036646.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354036646.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C-MEND, 18, Navsheel Dham, 208 017, Kanpur, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "C-MEND, 18, Navsheel Dham, 208 017, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shukla", 
        "givenName": "J. B.", 
        "id": "sg:person.013377603061.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377603061.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10666-007-9085-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046118272", 
          "https://doi.org/10.1007/s10666-007-9085-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-016-0603-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044575968", 
          "https://doi.org/10.1007/s10910-016-0603-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00703-013-0249-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011117158", 
          "https://doi.org/10.1007/s00703-013-0249-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-016-0639-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048949492", 
          "https://doi.org/10.1007/s10910-016-0639-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40808-015-0028-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050345287", 
          "https://doi.org/10.1007/s40808-015-0028-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10-07", 
    "datePublishedReg": "2016-10-07", 
    "description": "To overcome the water crisis for irrigation and other purposes, in this paper, we propose a non-linear mathematical model for artificial rain making by considering five dependent variables namely, water vapor density, densities of cloud droplets of small and large sizes, density of rain drops and cumulative concentration of mixture of aerosols of different sizes. It is assumed that these aerosols are conducive to the process of rain making, i.e. (a) the formation of small size cloud droplets from water vapors through the processes of nucleation and condensation, (b) changing them into large size cloud droplets through the processes of condensation, agglomeration, etc., and (c) changing these large cloud droplets into rain drops. The proposed model is analyzed using stability theory of differential equations. It is found that only one equilibrium is feasible and sufficient conditions for stability of such equilibrium are obtained. It is shown that the intensity of rainfall increases as the cumulative concentration of externally introduced aerosols in the atmosphere increases. Analysis reveals that for the continuous rainfall, it is necessary that water vapors must be continuously formed in the atmosphere. The numerical simulation of the model supports the analytical results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40808-016-0228-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053042", 
        "issn": [
          "2363-6203", 
          "2363-6211"
        ], 
        "name": "Modeling Earth Systems and Environment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "cloud droplets", 
      "rain drops", 
      "water vapor", 
      "large cloud droplets", 
      "effect of aerosols", 
      "non-linear mathematical model", 
      "artificial rain", 
      "water vapor density", 
      "rainfall increases", 
      "continuous rainfall", 
      "atmosphere increases", 
      "differential equations", 
      "aerosols", 
      "stability theory", 
      "mathematical model", 
      "sufficient conditions", 
      "process of condensation", 
      "water crisis", 
      "rain", 
      "rain making", 
      "vapor density", 
      "analytical results", 
      "numerical simulations", 
      "cumulative concentrations", 
      "vapor", 
      "such equilibria", 
      "rainfall", 
      "process of nucleation", 
      "atmosphere", 
      "equations", 
      "irrigation", 
      "model", 
      "equilibrium", 
      "modelling", 
      "concentration", 
      "theory", 
      "large size", 
      "simulations", 
      "dependent variable", 
      "process", 
      "drop", 
      "density", 
      "droplets", 
      "formation", 
      "intensity", 
      "increase", 
      "condensation", 
      "different sizes", 
      "variables", 
      "nucleation", 
      "conditions", 
      "analysis", 
      "stability", 
      "size", 
      "results", 
      "mixture", 
      "effect", 
      "purpose", 
      "agglomeration", 
      "crisis", 
      "paper", 
      "making"
    ], 
    "name": "Modelling and analysis of the effects of aerosols in making artificial rain", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017651572"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40808-016-0228-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40808-016-0228-1", 
      "https://app.dimensions.ai/details/publication/pub.1017651572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_694.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40808-016-0228-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40808-016-0228-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40808-016-0228-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40808-016-0228-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40808-016-0228-1'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      91 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40808-016-0228-1 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N4396bb8886794562aa5d73a0e2b3367a
4 schema:citation sg:pub.10.1007/s00703-013-0249-5
5 sg:pub.10.1007/s10666-007-9085-7
6 sg:pub.10.1007/s10910-016-0603-1
7 sg:pub.10.1007/s10910-016-0639-2
8 sg:pub.10.1007/s40808-015-0028-z
9 schema:datePublished 2016-10-07
10 schema:datePublishedReg 2016-10-07
11 schema:description To overcome the water crisis for irrigation and other purposes, in this paper, we propose a non-linear mathematical model for artificial rain making by considering five dependent variables namely, water vapor density, densities of cloud droplets of small and large sizes, density of rain drops and cumulative concentration of mixture of aerosols of different sizes. It is assumed that these aerosols are conducive to the process of rain making, i.e. (a) the formation of small size cloud droplets from water vapors through the processes of nucleation and condensation, (b) changing them into large size cloud droplets through the processes of condensation, agglomeration, etc., and (c) changing these large cloud droplets into rain drops. The proposed model is analyzed using stability theory of differential equations. It is found that only one equilibrium is feasible and sufficient conditions for stability of such equilibrium are obtained. It is shown that the intensity of rainfall increases as the cumulative concentration of externally introduced aerosols in the atmosphere increases. Analysis reveals that for the continuous rainfall, it is necessary that water vapors must be continuously formed in the atmosphere. The numerical simulation of the model supports the analytical results.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N1b1f57bbebb14257afdfb45cbf65cb49
15 N1f511b1bf3844a5d888f568c2090a4b8
16 sg:journal.1053042
17 schema:keywords aerosols
18 agglomeration
19 analysis
20 analytical results
21 artificial rain
22 atmosphere
23 atmosphere increases
24 cloud droplets
25 concentration
26 condensation
27 conditions
28 continuous rainfall
29 crisis
30 cumulative concentrations
31 density
32 dependent variable
33 different sizes
34 differential equations
35 drop
36 droplets
37 effect
38 effect of aerosols
39 equations
40 equilibrium
41 formation
42 increase
43 intensity
44 irrigation
45 large cloud droplets
46 large size
47 making
48 mathematical model
49 mixture
50 model
51 modelling
52 non-linear mathematical model
53 nucleation
54 numerical simulations
55 paper
56 process
57 process of condensation
58 process of nucleation
59 purpose
60 rain
61 rain drops
62 rain making
63 rainfall
64 rainfall increases
65 results
66 simulations
67 size
68 stability
69 stability theory
70 such equilibria
71 sufficient conditions
72 theory
73 vapor
74 vapor density
75 variables
76 water crisis
77 water vapor
78 water vapor density
79 schema:name Modelling and analysis of the effects of aerosols in making artificial rain
80 schema:pagination 1-11
81 schema:productId N1ed25e8bc793488ab0d6d12835453956
82 Na016156540eb49d9addbfe8a31f03135
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017651572
84 https://doi.org/10.1007/s40808-016-0228-1
85 schema:sdDatePublished 2022-09-02T15:59
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N7ba33795226e40f9a8fe7d23cf43eff1
88 schema:url https://doi.org/10.1007/s40808-016-0228-1
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N04cc7b317f53477ba0afcfdd8a78906d rdf:first sg:person.07354036646.17
93 rdf:rest N93af0dfc50d046168e02e4bbbdf86f27
94 N1b1f57bbebb14257afdfb45cbf65cb49 schema:volumeNumber 2
95 rdf:type schema:PublicationVolume
96 N1ed25e8bc793488ab0d6d12835453956 schema:name doi
97 schema:value 10.1007/s40808-016-0228-1
98 rdf:type schema:PropertyValue
99 N1f511b1bf3844a5d888f568c2090a4b8 schema:issueNumber 4
100 rdf:type schema:PublicationIssue
101 N4396bb8886794562aa5d73a0e2b3367a rdf:first sg:person.012420157467.23
102 rdf:rest N74e9f043bd4c45fbbbfb5617543ef8ff
103 N74e9f043bd4c45fbbbfb5617543ef8ff rdf:first sg:person.013621730353.60
104 rdf:rest N04cc7b317f53477ba0afcfdd8a78906d
105 N7ba33795226e40f9a8fe7d23cf43eff1 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N93af0dfc50d046168e02e4bbbdf86f27 rdf:first sg:person.013377603061.88
108 rdf:rest rdf:nil
109 Na016156540eb49d9addbfe8a31f03135 schema:name dimensions_id
110 schema:value pub.1017651572
111 rdf:type schema:PropertyValue
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
116 schema:name Applied Mathematics
117 rdf:type schema:DefinedTerm
118 sg:journal.1053042 schema:issn 2363-6203
119 2363-6211
120 schema:name Modeling Earth Systems and Environment
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.012420157467.23 schema:affiliation grid-institutes:grid.411507.6
124 schema:familyName Misra
125 schema:givenName A. K.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012420157467.23
127 rdf:type schema:Person
128 sg:person.013377603061.88 schema:affiliation grid-institutes:None
129 schema:familyName Shukla
130 schema:givenName J. B.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377603061.88
132 rdf:type schema:Person
133 sg:person.013621730353.60 schema:affiliation grid-institutes:grid.411507.6
134 schema:familyName Tripathi
135 schema:givenName Amita
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621730353.60
137 rdf:type schema:Person
138 sg:person.07354036646.17 schema:affiliation grid-institutes:None
139 schema:familyName Naresh
140 schema:givenName Ram
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354036646.17
142 rdf:type schema:Person
143 sg:pub.10.1007/s00703-013-0249-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011117158
144 https://doi.org/10.1007/s00703-013-0249-5
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s10666-007-9085-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046118272
147 https://doi.org/10.1007/s10666-007-9085-7
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s10910-016-0603-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044575968
150 https://doi.org/10.1007/s10910-016-0603-1
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10910-016-0639-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048949492
153 https://doi.org/10.1007/s10910-016-0639-2
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s40808-015-0028-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050345287
156 https://doi.org/10.1007/s40808-015-0028-z
157 rdf:type schema:CreativeWork
158 grid-institutes:None schema:alternateName C-MEND, 18, Navsheel Dham, 208 017, Kanpur, India
159 Department of Mathematics, H.B. Technological Institute, 208 002, Kanpur, India
160 schema:name C-MEND, 18, Navsheel Dham, 208 017, Kanpur, India
161 Department of Mathematics, H.B. Technological Institute, 208 002, Kanpur, India
162 rdf:type schema:Organization
163 grid-institutes:grid.411507.6 schema:alternateName Department of Mathematics, Institute of Science, Banaras Hindu University, 221 005, Varanasi, India
164 schema:name Department of Mathematics, Institute of Science, Banaras Hindu University, 221 005, Varanasi, India
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...