Tool Path Generation for Multi-Degree-of-Freedom Fast Tool Servo Diamond Turning of Optical Freeform Surfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-06

AUTHORS

H. B. Cai, G. Q. Shi

ABSTRACT

Fast tool servo diamond turning is one of the most important techniques for machining optical freeform surfaces. The tool path has a significant effect on roughness, waviness and profile errors. However, the mapping mechanism between the tool path and the surface form error is not precisely expressed. The paper presents a novel approach for modelling and simulation of the tool path generation in fast tool servo diamond turning. The approach, by analyzing scallop-height, linearization error and tool nose radius compensation, models the tool path generation process. The effects and characteristic of an optimized tool path are investigated through simulations. Experiments have been carried out to show that the model is feasible. More... »

PAGES

1-9

References to SciGraph publications

  • 2012-12. Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40799-019-00307-1

    DOI

    http://dx.doi.org/10.1007/s40799-019-00307-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111949829


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Changchun University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.440668.8", 
              "name": [
                "College of Mechanical and Electric Engineering, Changchun University of Science and Technology, 130022, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "H. B.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
              "id": "https://www.grid.ac/institutes/grid.458504.8", 
              "name": [
                "College of Mechanical and Electric Engineering, Changchun University of Science and Technology, 130022, Changchun, China", 
                "Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, 215163, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "G. Q.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00170-012-3964-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002524648", 
              "https://doi.org/10.1007/s00170-012-3964-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2013.12.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010646677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2014.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017826429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2014.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017826429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2014.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017826429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2014.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017826429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2014.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019062098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amr.1039.383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019603977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0960-1317/23/7/075010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022862305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2011.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032071420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2013.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036419230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2015.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036464335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.23.010233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039648230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2014.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050100423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954405414523595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063882936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954405414523595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063882936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.16.007323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065187647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.20.014477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065200607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.21.014728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065204137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opn.23.6.000030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065246725"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-06", 
        "datePublishedReg": "2019-02-06", 
        "description": "Fast tool servo diamond turning is one of the most important techniques for machining optical freeform surfaces. The tool path has a significant effect on roughness, waviness and profile errors. However, the mapping mechanism between the tool path and the surface form error is not precisely expressed. The paper presents a novel approach for modelling and simulation of the tool path generation in fast tool servo diamond turning. The approach, by analyzing scallop-height, linearization error and tool nose radius compensation, models the tool path generation process. The effects and characteristic of an optimized tool path are investigated through simulations. Experiments have been carried out to show that the model is feasible.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40799-019-00307-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1137303", 
            "issn": [
              "0732-8818", 
              "1747-1567"
            ], 
            "name": "Experimental Techniques", 
            "type": "Periodical"
          }
        ], 
        "name": "Tool Path Generation for Multi-Degree-of-Freedom Fast Tool Servo Diamond Turning of Optical Freeform Surfaces", 
        "pagination": "1-9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "648ca5589011e117bb2c6e53553c0da1b8e0904e01124d138cc9b2373618cec6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40799-019-00307-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111949829"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40799-019-00307-1", 
          "https://app.dimensions.ai/details/publication/pub.1111949829"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105399_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40799-019-00307-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40799-019-00307-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40799-019-00307-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40799-019-00307-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40799-019-00307-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      40 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40799-019-00307-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nbf9996d597ec4263866cb1df4f58673a
    4 schema:citation sg:pub.10.1007/s00170-012-3964-z
    5 https://doi.org/10.1016/j.ijmachtools.2011.08.010
    6 https://doi.org/10.1016/j.ijmachtools.2015.01.005
    7 https://doi.org/10.1016/j.precisioneng.2013.06.004
    8 https://doi.org/10.1016/j.precisioneng.2013.12.010
    9 https://doi.org/10.1016/j.precisioneng.2014.04.009
    10 https://doi.org/10.1016/j.precisioneng.2014.05.002
    11 https://doi.org/10.1016/j.precisioneng.2014.08.001
    12 https://doi.org/10.1088/0960-1317/23/7/075010
    13 https://doi.org/10.1177/0954405414523595
    14 https://doi.org/10.1364/oe.16.007323
    15 https://doi.org/10.1364/oe.20.014477
    16 https://doi.org/10.1364/oe.21.014728
    17 https://doi.org/10.1364/oe.23.010233
    18 https://doi.org/10.1364/opn.23.6.000030
    19 https://doi.org/10.4028/www.scientific.net/amr.1039.383
    20 schema:datePublished 2019-02-06
    21 schema:datePublishedReg 2019-02-06
    22 schema:description Fast tool servo diamond turning is one of the most important techniques for machining optical freeform surfaces. The tool path has a significant effect on roughness, waviness and profile errors. However, the mapping mechanism between the tool path and the surface form error is not precisely expressed. The paper presents a novel approach for modelling and simulation of the tool path generation in fast tool servo diamond turning. The approach, by analyzing scallop-height, linearization error and tool nose radius compensation, models the tool path generation process. The effects and characteristic of an optimized tool path are investigated through simulations. Experiments have been carried out to show that the model is feasible.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf sg:journal.1137303
    27 schema:name Tool Path Generation for Multi-Degree-of-Freedom Fast Tool Servo Diamond Turning of Optical Freeform Surfaces
    28 schema:pagination 1-9
    29 schema:productId N5e8b14223de8410a9cd28d78eaf776d6
    30 Nc3ec276b9be64062b89c21d0656f6c93
    31 Nd6ea216c359446f58e57dac660f304ea
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111949829
    33 https://doi.org/10.1007/s40799-019-00307-1
    34 schema:sdDatePublished 2019-04-11T09:02
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Na8e16fa35f6b43b9be7a8727c4a26639
    37 schema:url https://link.springer.com/10.1007%2Fs40799-019-00307-1
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N43c78a1b4e71404383c6325999115c75 schema:affiliation https://www.grid.ac/institutes/grid.440668.8
    42 schema:familyName Cai
    43 schema:givenName H. B.
    44 rdf:type schema:Person
    45 N5e8b14223de8410a9cd28d78eaf776d6 schema:name readcube_id
    46 schema:value 648ca5589011e117bb2c6e53553c0da1b8e0904e01124d138cc9b2373618cec6
    47 rdf:type schema:PropertyValue
    48 N79ac3935abeb4cbdbe737a434d91b776 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
    49 schema:familyName Shi
    50 schema:givenName G. Q.
    51 rdf:type schema:Person
    52 Na8e16fa35f6b43b9be7a8727c4a26639 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Nbf9996d597ec4263866cb1df4f58673a rdf:first N43c78a1b4e71404383c6325999115c75
    55 rdf:rest Nf955ba52d2b1426da508ccb939890269
    56 Nc3ec276b9be64062b89c21d0656f6c93 schema:name doi
    57 schema:value 10.1007/s40799-019-00307-1
    58 rdf:type schema:PropertyValue
    59 Nd6ea216c359446f58e57dac660f304ea schema:name dimensions_id
    60 schema:value pub.1111949829
    61 rdf:type schema:PropertyValue
    62 Nf955ba52d2b1426da508ccb939890269 rdf:first N79ac3935abeb4cbdbe737a434d91b776
    63 rdf:rest rdf:nil
    64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Information and Computing Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Artificial Intelligence and Image Processing
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1137303 schema:issn 0732-8818
    71 1747-1567
    72 schema:name Experimental Techniques
    73 rdf:type schema:Periodical
    74 sg:pub.10.1007/s00170-012-3964-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002524648
    75 https://doi.org/10.1007/s00170-012-3964-z
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1016/j.ijmachtools.2011.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032071420
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/j.ijmachtools.2015.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036464335
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/j.precisioneng.2013.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036419230
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/j.precisioneng.2013.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010646677
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/j.precisioneng.2014.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050100423
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.precisioneng.2014.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019062098
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.precisioneng.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017826429
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1088/0960-1317/23/7/075010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022862305
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1177/0954405414523595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063882936
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1364/oe.16.007323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065187647
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1364/oe.20.014477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065200607
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1364/oe.21.014728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204137
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1364/oe.23.010233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039648230
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1364/opn.23.6.000030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065246725
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.4028/www.scientific.net/amr.1039.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019603977
    106 rdf:type schema:CreativeWork
    107 https://www.grid.ac/institutes/grid.440668.8 schema:alternateName Changchun University of Science and Technology
    108 schema:name College of Mechanical and Electric Engineering, Changchun University of Science and Technology, 130022, Changchun, China
    109 rdf:type schema:Organization
    110 https://www.grid.ac/institutes/grid.458504.8 schema:alternateName Suzhou Institute of Biomedical Engineering and Technology
    111 schema:name College of Mechanical and Electric Engineering, Changchun University of Science and Technology, 130022, Changchun, China
    112 Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, 215163, Suzhou, China
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...