Steam gasification reactivity of a high-sodium coal fly ash obtained from a pilot scale CFB gasifier View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Haixia Zhang, Kuangshi Yu, Zhiping Zhu

ABSTRACT

Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly influences the gasification efficiency. The purpose of this research is to investigate the gasification reactivity of a high-sodium Zhundong (ZD) coal fly ash obtained from a pilot-scale 2.5 t/d CFB gasification system. The experiments were carried out in a thermogravimetric analyzer with steam as gasification agent, and fast pyrolyzed ZD char was also investigated as a reference sample. The results show that increasing temperature accelerates the gasification rate both for fly ash and ZD char. Fly ash has higher gasification rate at the initial gasification stage. On the contrary, ZD char has higher reaction rate even at higher carbon conversion stage. Via distributed activation energy model, the average activation energy of ZD char and fly ash is calculated to be 94.4 and 91.2 kJ/mol, respectively. The integrated model study reveals that the reaction order of ZD char is about 0.74, whereas the reaction order of fly ash decreases from 1 to 0.59 when temperature increases from 900 to 1050 °C. The gasification reactivity of ZD coal fly ash is quite different with literature research on those fly ashes with rarely little catalytic elements in coal ashes. The interesting results are related with the unique properties of ZD coal fly ash and the transformation of sodium during gasification process. More... »

PAGES

244-252

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40789-018-0192-7

DOI

http://dx.doi.org/10.1007/s40789-018-0192-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100557041


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Engineering Thermophysics", 
          "id": "https://www.grid.ac/institutes/grid.458465.e", 
          "name": [
            "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Haixia", 
        "id": "sg:person.010323412405.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010323412405.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Engineering Thermophysics", 
          "id": "https://www.grid.ac/institutes/grid.458465.e", 
          "name": [
            "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Kuangshi", 
        "id": "sg:person.015601626163.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601626163.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Engineering Thermophysics", 
          "id": "https://www.grid.ac/institutes/grid.458465.e", 
          "name": [
            "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Zhiping", 
        "id": "sg:person.011120773005.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011120773005.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.coal.2009.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001400719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-015-0083-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003564841", 
          "https://doi.org/10.1007/s40789-015-0083-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-015-0083-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003564841", 
          "https://doi.org/10.1007/s40789-015-0083-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003869592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-016-0103-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004541103", 
          "https://doi.org/10.1007/s40789-016-0103-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-016-0103-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004541103", 
          "https://doi.org/10.1007/s40789-016-0103-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuproc.2011.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005470108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2015.01.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006301877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-014-0023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008418322", 
          "https://doi.org/10.1007/s40789-014-0023-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-014-0023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008418322", 
          "https://doi.org/10.1007/s40789-014-0023-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2013.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009339998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuproc.2005.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010104837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-014-0027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011680251", 
          "https://doi.org/10.1007/s40789-014-0027-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-014-0027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011680251", 
          "https://doi.org/10.1007/s40789-014-0027-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-014-0010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011681778", 
          "https://doi.org/10.1007/s40789-014-0010-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40789-014-0010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011681778", 
          "https://doi.org/10.1007/s40789-014-0010-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2016.10.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014975184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-007-0277-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015545495", 
          "https://doi.org/10.1007/s11630-007-0277-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2006.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019740772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.combustflame.2012.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020475661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2015.01.233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022052553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-2361(01)00127-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022752979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2010.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023277037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2005.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024000081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2005.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024000081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2016.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031245236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3820(01)00184-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033358995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2015.10.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034243065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2011.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034796736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2016.06.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042298211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2016.06.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042298211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.6b00503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055086529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef501798g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055480540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef502128s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055480638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.6b03456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085321955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-017-0950-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090741860", 
          "https://doi.org/10.1007/s11630-017-0950-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-017-0950-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090741860", 
          "https://doi.org/10.1007/s11630-017-0950-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly influences the gasification efficiency. The purpose of this research is to investigate the gasification reactivity of a high-sodium Zhundong (ZD) coal fly ash obtained from a pilot-scale 2.5 t/d CFB gasification system. The experiments were carried out in a thermogravimetric analyzer with steam as gasification agent, and fast pyrolyzed ZD char was also investigated as a reference sample. The results show that increasing temperature accelerates the gasification rate both for fly ash and ZD char. Fly ash has higher gasification rate at the initial gasification stage. On the contrary, ZD char has higher reaction rate even at higher carbon conversion stage. Via distributed activation energy model, the average activation energy of ZD char and fly ash is calculated to be 94.4 and 91.2 kJ/mol, respectively. The integrated model study reveals that the reaction order of ZD char is about 0.74, whereas the reaction order of fly ash decreases from 1 to 0.59 when temperature increases from 900 to 1050 \u00b0C. The gasification reactivity of ZD coal fly ash is quite different with literature research on those fly ashes with rarely little catalytic elements in coal ashes. The interesting results are related with the unique properties of ZD coal fly ash and the transformation of sodium during gasification process.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40789-018-0192-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7186695", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053186", 
        "issn": [
          "2095-8293", 
          "2198-7823"
        ], 
        "name": "International Journal of Coal Science & Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Steam gasification reactivity of a high-sodium coal fly ash obtained from a pilot scale CFB gasifier", 
    "pagination": "244-252", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a83a24b33f5dc16404ea80aae4b15e54309ed0b7f9bb5a626dc14e959ca4c0c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40789-018-0192-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100557041"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40789-018-0192-7", 
      "https://app.dimensions.ai/details/publication/pub.1100557041"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40789-018-0192-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40789-018-0192-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40789-018-0192-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40789-018-0192-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40789-018-0192-7'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40789-018-0192-7 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N5fc32a05097944bd824969f9db26aafd
4 schema:citation sg:pub.10.1007/s11630-007-0277-x
5 sg:pub.10.1007/s11630-017-0950-7
6 sg:pub.10.1007/s40789-014-0010-9
7 sg:pub.10.1007/s40789-014-0023-4
8 sg:pub.10.1007/s40789-014-0027-0
9 sg:pub.10.1007/s40789-015-0083-0
10 sg:pub.10.1007/s40789-016-0103-8
11 https://doi.org/10.1016/j.cep.2006.08.008
12 https://doi.org/10.1016/j.coal.2009.12.015
13 https://doi.org/10.1016/j.combustflame.2012.10.020
14 https://doi.org/10.1016/j.energy.2010.10.034
15 https://doi.org/10.1016/j.energy.2011.10.032
16 https://doi.org/10.1016/j.energy.2016.06.052
17 https://doi.org/10.1016/j.fuel.2005.10.016
18 https://doi.org/10.1016/j.fuel.2013.01.031
19 https://doi.org/10.1016/j.fuel.2015.10.084
20 https://doi.org/10.1016/j.fuel.2016.06.021
21 https://doi.org/10.1016/j.fuel.2016.10.097
22 https://doi.org/10.1016/j.fuproc.2005.06.006
23 https://doi.org/10.1016/j.fuproc.2011.01.007
24 https://doi.org/10.1016/j.ijhydene.2015.09.003
25 https://doi.org/10.1016/j.proeng.2015.01.147
26 https://doi.org/10.1016/j.proeng.2015.01.233
27 https://doi.org/10.1016/s0016-2361(01)00127-2
28 https://doi.org/10.1016/s0378-3820(01)00184-9
29 https://doi.org/10.1021/acs.energyfuels.6b00503
30 https://doi.org/10.1021/acs.energyfuels.6b03456
31 https://doi.org/10.1021/ef501798g
32 https://doi.org/10.1021/ef502128s
33 schema:datePublished 2018-06
34 schema:datePublishedReg 2018-06-01
35 schema:description Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly influences the gasification efficiency. The purpose of this research is to investigate the gasification reactivity of a high-sodium Zhundong (ZD) coal fly ash obtained from a pilot-scale 2.5 t/d CFB gasification system. The experiments were carried out in a thermogravimetric analyzer with steam as gasification agent, and fast pyrolyzed ZD char was also investigated as a reference sample. The results show that increasing temperature accelerates the gasification rate both for fly ash and ZD char. Fly ash has higher gasification rate at the initial gasification stage. On the contrary, ZD char has higher reaction rate even at higher carbon conversion stage. Via distributed activation energy model, the average activation energy of ZD char and fly ash is calculated to be 94.4 and 91.2 kJ/mol, respectively. The integrated model study reveals that the reaction order of ZD char is about 0.74, whereas the reaction order of fly ash decreases from 1 to 0.59 when temperature increases from 900 to 1050 °C. The gasification reactivity of ZD coal fly ash is quite different with literature research on those fly ashes with rarely little catalytic elements in coal ashes. The interesting results are related with the unique properties of ZD coal fly ash and the transformation of sodium during gasification process.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N60b54c335a7d4c8888b92f545725a6ea
40 Nc06edcf9b8814c34ba3f19f8b5a0efe6
41 sg:journal.1053186
42 schema:name Steam gasification reactivity of a high-sodium coal fly ash obtained from a pilot scale CFB gasifier
43 schema:pagination 244-252
44 schema:productId N31e629eeca79481391ceae078fb962cc
45 N6c1ef3dd8602478e875e55c3a953a76d
46 Nb874d8f8e99144f98985842a557085f4
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100557041
48 https://doi.org/10.1007/s40789-018-0192-7
49 schema:sdDatePublished 2019-04-10T13:06
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N6af8c8b528724213bd87b9e12747591e
52 schema:url http://link.springer.com/10.1007/s40789-018-0192-7
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2759a8b5adc842d9a716c2bb8450fcea rdf:first sg:person.011120773005.19
57 rdf:rest rdf:nil
58 N31e629eeca79481391ceae078fb962cc schema:name dimensions_id
59 schema:value pub.1100557041
60 rdf:type schema:PropertyValue
61 N5fc32a05097944bd824969f9db26aafd rdf:first sg:person.010323412405.49
62 rdf:rest N79903e792d8f45da941e69ba8ec8a96d
63 N60b54c335a7d4c8888b92f545725a6ea schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 N6af8c8b528724213bd87b9e12747591e schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N6c1ef3dd8602478e875e55c3a953a76d schema:name doi
68 schema:value 10.1007/s40789-018-0192-7
69 rdf:type schema:PropertyValue
70 N79903e792d8f45da941e69ba8ec8a96d rdf:first sg:person.015601626163.69
71 rdf:rest N2759a8b5adc842d9a716c2bb8450fcea
72 Nb874d8f8e99144f98985842a557085f4 schema:name readcube_id
73 schema:value 3a83a24b33f5dc16404ea80aae4b15e54309ed0b7f9bb5a626dc14e959ca4c0c
74 rdf:type schema:PropertyValue
75 Nc06edcf9b8814c34ba3f19f8b5a0efe6 schema:volumeNumber 5
76 rdf:type schema:PublicationVolume
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
81 schema:name Resources Engineering and Extractive Metallurgy
82 rdf:type schema:DefinedTerm
83 sg:grant.7186695 http://pending.schema.org/fundedItem sg:pub.10.1007/s40789-018-0192-7
84 rdf:type schema:MonetaryGrant
85 sg:journal.1053186 schema:issn 2095-8293
86 2198-7823
87 schema:name International Journal of Coal Science & Technology
88 rdf:type schema:Periodical
89 sg:person.010323412405.49 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
90 schema:familyName Zhang
91 schema:givenName Haixia
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010323412405.49
93 rdf:type schema:Person
94 sg:person.011120773005.19 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
95 schema:familyName Zhu
96 schema:givenName Zhiping
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011120773005.19
98 rdf:type schema:Person
99 sg:person.015601626163.69 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
100 schema:familyName Yu
101 schema:givenName Kuangshi
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601626163.69
103 rdf:type schema:Person
104 sg:pub.10.1007/s11630-007-0277-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015545495
105 https://doi.org/10.1007/s11630-007-0277-x
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11630-017-0950-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090741860
108 https://doi.org/10.1007/s11630-017-0950-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s40789-014-0010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011681778
111 https://doi.org/10.1007/s40789-014-0010-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s40789-014-0023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008418322
114 https://doi.org/10.1007/s40789-014-0023-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s40789-014-0027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011680251
117 https://doi.org/10.1007/s40789-014-0027-0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s40789-015-0083-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003564841
120 https://doi.org/10.1007/s40789-015-0083-0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s40789-016-0103-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004541103
123 https://doi.org/10.1007/s40789-016-0103-8
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cep.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019740772
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.coal.2009.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001400719
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.combustflame.2012.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020475661
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.energy.2010.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023277037
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.energy.2011.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034796736
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.energy.2016.06.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042298211
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.fuel.2005.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024000081
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.fuel.2013.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009339998
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.fuel.2015.10.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034243065
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.fuel.2016.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031245236
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.fuel.2016.10.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014975184
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.fuproc.2005.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010104837
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.fuproc.2011.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005470108
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ijhydene.2015.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003869592
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.proeng.2015.01.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006301877
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.proeng.2015.01.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022052553
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0016-2361(01)00127-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022752979
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0378-3820(01)00184-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033358995
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/acs.energyfuels.6b00503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055086529
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/acs.energyfuels.6b03456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085321955
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/ef501798g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055480540
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/ef502128s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055480638
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.458465.e schema:alternateName Institute of Engineering Thermophysics
170 schema:name Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...