Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer. Part 1: Biological Facts and Studies in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

Aaron Goldman, Mohammad Kohandel, Jean Clairambault

ABSTRACT

Successful, durable cancer treatment is limited by drug resistance. Cancer stem cells (CSC) comprise (typically) a rare tumor subpopulation that contributes both intrinsic drug resistance and tumor re-initiation after therapy. Emerging evidence suggests that drug resistance is more complex than this single-cell level might suggest, and is likely governed by dynamics encompassing the entire tumor population. Here, we discuss the complexity of drug resistance by focusing on efforts that interface biology (wet lab) with mathematical modeling and simulation (dry lab) to study and explain the role of CSC and other cancer cells in the context of the entire ecosystem. Starting from biological evidence, we review the current state of cancer research from the perspective of the single-cell level, “The cancer cell,” its intrinsic physiopathology and its response to drug exposure. We discuss insufficiencies of this level of observation, in particular, the unaccounted for resistance to targeted therapies, and show why it is necessary to consider the entirety of the cell population, which is the only way to capture the role of biological heterogeneity. Importantly, we review how mathematical models have been implemented to elucidate mechanisms of drug resistance, and efforts made to validate biological experiments. Finally, we present emerging biological models, and therapeutic strategies inspired by mathematics, with the goal of improving the clinical management of cancer. Over the past century, we have learned that cancer drug resistance is extraordinarily complex and requires an interdisciplinary scientific effort to unmask. The network of communication between and among cells within the diverse tumor heterogeneity drives acquired and intrinsic mechanisms of resistance. Harnessing biology and math to simulate, study, and explain the mechanisms of resistance, by considering the whole tumor population, is providing new clues to overcome it. More... »

PAGES

253-259

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40778-017-0097-1

DOI

http://dx.doi.org/10.1007/s40778-017-0097-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090956838


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Medicine, Harvard Medical School, 02115, Boston, MA, USA", 
            "Harvard-MIT Division of Health Sciences and Technology, 02139, Cambridge, MA, USA", 
            "Division of Engineering in Medicine, Department of Medicine, Brigham and Women\u2019s Hospital, 02115, Boston, MA, USA", 
            "Harvard Digestive Disease Center, Boston, MA, USA", 
            "Integrative Immuno-Oncology Center, Mitra Biotech, 01801, Woburn, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldman", 
        "givenName": "Aaron", 
        "id": "sg:person.01242711414.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242711414.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fields Institute for Research in Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.249304.8", 
          "name": [
            "Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Centre for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, M5T 3J1, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohandel", 
        "givenName": "Mohammad", 
        "id": "sg:person.01217703241.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217703241.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "INRIA Paris Research Centre, MAMBA Team, F-75012, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC University Paris 06, UMR 7598, Jacques-Louis Lions Lab, F-75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clairambault", 
        "givenName": "Jean", 
        "id": "sg:person.01176441407.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176441407.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1470-2045(04)01411-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000138975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pbc.22612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004444781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pbc.22612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004444781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood.v99.6.1928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006567876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008091156", 
          "https://doi.org/10.1038/sj.onc.1209990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008091156", 
          "https://doi.org/10.1038/sj.onc.1209990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008115122", 
          "https://doi.org/10.1038/srep19103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2009.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010114196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-09-2824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010904095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar3002969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011217393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fendo.2012.00125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012402416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012836948", 
          "https://doi.org/10.1038/ncomms7169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2009.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014122898", 
          "https://doi.org/10.1038/ismej.2009.64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2009.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014122898", 
          "https://doi.org/10.1038/ismej.2009.64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/geg.s12270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014339789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014578137", 
          "https://doi.org/10.1038/nature13556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014627596", 
          "https://doi.org/10.1038/nature12624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2184.2006.00369.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015217254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-230x(08)60683-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016303505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.clpt.6100202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018075427", 
          "https://doi.org/10.1038/sj.clpt.6100202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2010.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018369323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1102454108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019813663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(08)70152-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020544196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0162394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021061915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400067101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024245226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep22498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025780002", 
          "https://doi.org/10.1038/srep22498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2015.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028034599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030131756", 
          "https://doi.org/10.1038/nrc706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030131756", 
          "https://doi.org/10.1038/nrc706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/23723556.2015.1030534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030276929", 
          "https://doi.org/10.1038/30861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030276929", 
          "https://doi.org/10.1038/30861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/jcm4010127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031155526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-07-1971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031848589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2013.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032316401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2184.2006.00378.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035193732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035672231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/169628a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040317768", 
          "https://doi.org/10.1038/169628a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041498820", 
          "https://doi.org/10.1038/ncomms7139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2010.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042214389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc1110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042384046", 
          "https://doi.org/10.1038/ncponc1110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.15.2421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042546134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042664529", 
          "https://doi.org/10.1038/nrc1098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042664529", 
          "https://doi.org/10.1038/nrc1098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmc1309091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043311395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043638446", 
          "https://doi.org/10.1038/ncomms3467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2012.184655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043940886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.2.3.275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044116337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-0461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045604738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmed.2008.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049499797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm.2016.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049753975", 
          "https://doi.org/10.1038/nrm.2016.24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2184.2009.00619.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050452279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2184.2009.00619.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050452279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050924893", 
          "https://doi.org/10.1038/nrc1590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050924893", 
          "https://doi.org/10.1038/nrc1590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053327451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b00320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055137750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.131.3409.1292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062474216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074673674", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077357078", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078414590", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080747866", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080947691", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "Successful, durable cancer treatment is limited by drug resistance. Cancer stem cells (CSC) comprise (typically) a rare tumor subpopulation that contributes both intrinsic drug resistance and tumor re-initiation after therapy. Emerging evidence suggests that drug resistance is more complex than this single-cell level might suggest, and is likely governed by dynamics encompassing the entire tumor population. Here, we discuss the complexity of drug resistance by focusing on efforts that interface biology (wet lab) with mathematical modeling and simulation (dry lab) to study and explain the role of CSC and other cancer cells in the context of the entire ecosystem. Starting from biological evidence, we review the current state of cancer research from the perspective of the single-cell level, \u201cThe cancer cell,\u201d its intrinsic physiopathology and its response to drug exposure. We discuss insufficiencies of this level of observation, in particular, the unaccounted for resistance to targeted therapies, and show why it is necessary to consider the entirety of the cell population, which is the only way to capture the role of biological heterogeneity. Importantly, we review how mathematical models have been implemented to elucidate mechanisms of drug resistance, and efforts made to validate biological experiments. Finally, we present emerging biological models, and therapeutic strategies inspired by mathematics, with the goal of improving the clinical management of cancer. Over the past century, we have learned that cancer drug resistance is extraordinarily complex and requires an interdisciplinary scientific effort to unmask. The network of communication between and among cells within the diverse tumor heterogeneity drives acquired and intrinsic mechanisms of resistance. Harnessing biology and math to simulate, study, and explain the mechanisms of resistance, by considering the whole tumor population, is providing new clues to overcome it.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40778-017-0097-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051321", 
        "issn": [
          "2198-7866"
        ], 
        "name": "Current Stem Cell Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer. Part 1: Biological Facts and Studies in Drug Resistance", 
    "pagination": "253-259", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0f5d58af547592fb4b64d8c64b1f13ba3a624b5d1bb3662e7f8f2d5bce3079f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40778-017-0097-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090956838"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40778-017-0097-1", 
      "https://app.dimensions.ai/details/publication/pub.1090956838"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54319_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40778-017-0097-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40778-017-0097-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40778-017-0097-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40778-017-0097-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40778-017-0097-1'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40778-017-0097-1 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N9570a430586c491982b4dfca5f965c13
4 schema:citation sg:pub.10.1038/169628a0
5 sg:pub.10.1038/30861
6 sg:pub.10.1038/ismej.2009.64
7 sg:pub.10.1038/nature12624
8 sg:pub.10.1038/nature13556
9 sg:pub.10.1038/ncomms3467
10 sg:pub.10.1038/ncomms7139
11 sg:pub.10.1038/ncomms7169
12 sg:pub.10.1038/ncponc1110
13 sg:pub.10.1038/nrc1098
14 sg:pub.10.1038/nrc1590
15 sg:pub.10.1038/nrc706
16 sg:pub.10.1038/nrm.2016.24
17 sg:pub.10.1038/sj.clpt.6100202
18 sg:pub.10.1038/sj.onc.1209990
19 sg:pub.10.1038/srep19103
20 sg:pub.10.1038/srep22498
21 https://app.dimensions.ai/details/publication/pub.1074673674
22 https://app.dimensions.ai/details/publication/pub.1077357078
23 https://app.dimensions.ai/details/publication/pub.1078414590
24 https://app.dimensions.ai/details/publication/pub.1080747866
25 https://app.dimensions.ai/details/publication/pub.1080947691
26 https://doi.org/10.1002/pbc.22612
27 https://doi.org/10.1016/j.actbio.2013.04.028
28 https://doi.org/10.1016/j.cell.2009.06.034
29 https://doi.org/10.1016/j.cell.2010.02.027
30 https://doi.org/10.1016/j.cell.2011.07.026
31 https://doi.org/10.1016/j.jtbi.2010.05.024
32 https://doi.org/10.1016/j.mbs.2015.11.012
33 https://doi.org/10.1016/j.molmed.2008.08.003
34 https://doi.org/10.1016/s0065-230x(08)60683-1
35 https://doi.org/10.1016/s1470-2045(04)01411-1
36 https://doi.org/10.1016/s1470-2045(08)70152-9
37 https://doi.org/10.1021/acsnano.6b00320
38 https://doi.org/10.1021/ar3002969
39 https://doi.org/10.1056/nejmc1309091
40 https://doi.org/10.1073/pnas.0400067101
41 https://doi.org/10.1073/pnas.1102454108
42 https://doi.org/10.1080/23723556.2015.1030534
43 https://doi.org/10.1111/j.1365-2184.2006.00369.x
44 https://doi.org/10.1111/j.1365-2184.2006.00378.x
45 https://doi.org/10.1111/j.1365-2184.2009.00619.x
46 https://doi.org/10.1126/science.131.3409.1292
47 https://doi.org/10.1128/mcb.2.3.275
48 https://doi.org/10.1158/0008-5472.can-07-1971
49 https://doi.org/10.1158/1078-0432.ccr-08-0461
50 https://doi.org/10.1158/1078-0432.ccr-09-2824
51 https://doi.org/10.1182/blood.v99.6.1928
52 https://doi.org/10.1200/jco.2007.15.2421
53 https://doi.org/10.1371/journal.pcbi.1003481
54 https://doi.org/10.1371/journal.pone.0162394
55 https://doi.org/10.1373/clinchem.2012.184655
56 https://doi.org/10.3389/fendo.2012.00125
57 https://doi.org/10.3390/jcm4010127
58 https://doi.org/10.4137/geg.s12270
59 schema:datePublished 2017-09
60 schema:datePublishedReg 2017-09-01
61 schema:description Successful, durable cancer treatment is limited by drug resistance. Cancer stem cells (CSC) comprise (typically) a rare tumor subpopulation that contributes both intrinsic drug resistance and tumor re-initiation after therapy. Emerging evidence suggests that drug resistance is more complex than this single-cell level might suggest, and is likely governed by dynamics encompassing the entire tumor population. Here, we discuss the complexity of drug resistance by focusing on efforts that interface biology (wet lab) with mathematical modeling and simulation (dry lab) to study and explain the role of CSC and other cancer cells in the context of the entire ecosystem. Starting from biological evidence, we review the current state of cancer research from the perspective of the single-cell level, “The cancer cell,” its intrinsic physiopathology and its response to drug exposure. We discuss insufficiencies of this level of observation, in particular, the unaccounted for resistance to targeted therapies, and show why it is necessary to consider the entirety of the cell population, which is the only way to capture the role of biological heterogeneity. Importantly, we review how mathematical models have been implemented to elucidate mechanisms of drug resistance, and efforts made to validate biological experiments. Finally, we present emerging biological models, and therapeutic strategies inspired by mathematics, with the goal of improving the clinical management of cancer. Over the past century, we have learned that cancer drug resistance is extraordinarily complex and requires an interdisciplinary scientific effort to unmask. The network of communication between and among cells within the diverse tumor heterogeneity drives acquired and intrinsic mechanisms of resistance. Harnessing biology and math to simulate, study, and explain the mechanisms of resistance, by considering the whole tumor population, is providing new clues to overcome it.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf Ncc2b9e4b948f4634a307da5db83e9d64
66 Ne21a547b424243388cf9de57222955bf
67 sg:journal.1051321
68 schema:name Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer. Part 1: Biological Facts and Studies in Drug Resistance
69 schema:pagination 253-259
70 schema:productId N0d6479eed6644714b5bf3abf909a193e
71 N1bbe1aee81da4368be8cc17960708194
72 Nfc7af12b494f4c5e8e5ffb7fe54f9d41
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090956838
74 https://doi.org/10.1007/s40778-017-0097-1
75 schema:sdDatePublished 2019-04-11T10:18
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N297f18e9790f492fb1a543b08e5900b3
78 schema:url https://link.springer.com/10.1007%2Fs40778-017-0097-1
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N0d6479eed6644714b5bf3abf909a193e schema:name readcube_id
83 schema:value e0f5d58af547592fb4b64d8c64b1f13ba3a624b5d1bb3662e7f8f2d5bce3079f
84 rdf:type schema:PropertyValue
85 N1bbe1aee81da4368be8cc17960708194 schema:name doi
86 schema:value 10.1007/s40778-017-0097-1
87 rdf:type schema:PropertyValue
88 N297f18e9790f492fb1a543b08e5900b3 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N3ee9346b71f14d8bbdc55c60ed63ef55 rdf:first sg:person.01176441407.43
91 rdf:rest rdf:nil
92 N9570a430586c491982b4dfca5f965c13 rdf:first sg:person.01242711414.77
93 rdf:rest Ne35a8e8ef9b2471d9a277b4108643dba
94 Ncc2b9e4b948f4634a307da5db83e9d64 schema:issueNumber 3
95 rdf:type schema:PublicationIssue
96 Ne21a547b424243388cf9de57222955bf schema:volumeNumber 3
97 rdf:type schema:PublicationVolume
98 Ne35a8e8ef9b2471d9a277b4108643dba rdf:first sg:person.01217703241.62
99 rdf:rest N3ee9346b71f14d8bbdc55c60ed63ef55
100 Nfc7af12b494f4c5e8e5ffb7fe54f9d41 schema:name dimensions_id
101 schema:value pub.1090956838
102 rdf:type schema:PropertyValue
103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
104 schema:name Medical and Health Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
107 schema:name Oncology and Carcinogenesis
108 rdf:type schema:DefinedTerm
109 sg:journal.1051321 schema:issn 2198-7866
110 schema:name Current Stem Cell Reports
111 rdf:type schema:Periodical
112 sg:person.01176441407.43 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
113 schema:familyName Clairambault
114 schema:givenName Jean
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176441407.43
116 rdf:type schema:Person
117 sg:person.01217703241.62 schema:affiliation https://www.grid.ac/institutes/grid.249304.8
118 schema:familyName Kohandel
119 schema:givenName Mohammad
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217703241.62
121 rdf:type schema:Person
122 sg:person.01242711414.77 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
123 schema:familyName Goldman
124 schema:givenName Aaron
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242711414.77
126 rdf:type schema:Person
127 sg:pub.10.1038/169628a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040317768
128 https://doi.org/10.1038/169628a0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/30861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030276929
131 https://doi.org/10.1038/30861
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/ismej.2009.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014122898
134 https://doi.org/10.1038/ismej.2009.64
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature12624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014627596
137 https://doi.org/10.1038/nature12624
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature13556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014578137
140 https://doi.org/10.1038/nature13556
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ncomms3467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043638446
143 https://doi.org/10.1038/ncomms3467
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ncomms7139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041498820
146 https://doi.org/10.1038/ncomms7139
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ncomms7169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012836948
149 https://doi.org/10.1038/ncomms7169
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ncponc1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042384046
152 https://doi.org/10.1038/ncponc1110
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nrc1098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042664529
155 https://doi.org/10.1038/nrc1098
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nrc1590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050924893
158 https://doi.org/10.1038/nrc1590
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nrc706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030131756
161 https://doi.org/10.1038/nrc706
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nrm.2016.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049753975
164 https://doi.org/10.1038/nrm.2016.24
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/sj.clpt.6100202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018075427
167 https://doi.org/10.1038/sj.clpt.6100202
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/sj.onc.1209990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008091156
170 https://doi.org/10.1038/sj.onc.1209990
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/srep19103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008115122
173 https://doi.org/10.1038/srep19103
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/srep22498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025780002
176 https://doi.org/10.1038/srep22498
177 rdf:type schema:CreativeWork
178 https://app.dimensions.ai/details/publication/pub.1074673674 schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1077357078 schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1078414590 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1080747866 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1080947691 schema:CreativeWork
183 https://doi.org/10.1002/pbc.22612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004444781
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.actbio.2013.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032316401
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cell.2009.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010114196
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.cell.2010.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042214389
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.cell.2011.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053327451
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jtbi.2010.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018369323
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.mbs.2015.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028034599
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.molmed.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049499797
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0065-230x(08)60683-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303505
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s1470-2045(04)01411-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000138975
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s1470-2045(08)70152-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020544196
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/acsnano.6b00320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055137750
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/ar3002969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011217393
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1056/nejmc1309091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043311395
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.0400067101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024245226
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.1102454108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019813663
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1080/23723556.2015.1030534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170024
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.1365-2184.2006.00369.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015217254
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.1365-2184.2006.00378.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035193732
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1111/j.1365-2184.2009.00619.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050452279
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.131.3409.1292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062474216
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1128/mcb.2.3.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044116337
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1158/0008-5472.can-07-1971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031848589
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1158/1078-0432.ccr-08-0461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045604738
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1158/1078-0432.ccr-09-2824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010904095
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1182/blood.v99.6.1928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006567876
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1200/jco.2007.15.2421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042546134
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1371/journal.pcbi.1003481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035672231
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1371/journal.pone.0162394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021061915
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1373/clinchem.2012.184655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043940886
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3389/fendo.2012.00125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012402416
244 rdf:type schema:CreativeWork
245 https://doi.org/10.3390/jcm4010127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031155526
246 rdf:type schema:CreativeWork
247 https://doi.org/10.4137/geg.s12270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014339789
248 rdf:type schema:CreativeWork
249 https://www.grid.ac/institutes/grid.249304.8 schema:alternateName Fields Institute for Research in Mathematical Sciences
250 schema:name Centre for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, M5T 3J1, Toronto, ON, Canada
251 Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
254 schema:name INRIA Paris Research Centre, MAMBA Team, F-75012, Paris, France
255 Sorbonne Universités, UPMC University Paris 06, UMR 7598, Jacques-Louis Lions Lab, F-75005, Paris, France
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
258 schema:name Department of Medicine, Harvard Medical School, 02115, Boston, MA, USA
259 Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, 02115, Boston, MA, USA
260 Harvard Digestive Disease Center, Boston, MA, USA
261 Harvard-MIT Division of Health Sciences and Technology, 02139, Cambridge, MA, USA
262 Integrative Immuno-Oncology Center, Mitra Biotech, 01801, Woburn, MA, USA
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...