Developing Reasoning about the Derivative of a Complex-Valued Function with the Aid of Geometer’s Sketchpad View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Jonathan Troup

ABSTRACT

In this study, a description is provided for the development of two undergraduate students’ geometric reasoning about the derivative of a complex-valued function with the aid of Geometer’s Sketchpad (GSP) during an interview sequence designed to help them characterize the derivative geometrically. Specifically, a particular GSP task at the end of this interview sequence aided the participants in viewing the derivative as a local property. This advancement is notable as previous participants had been largely unable to make this characterization precisely, and the participants of this study only did so while working on the final task of the interview sequence. This task required students to determine an algebraic formula given only geometric data through GSP. Particularly, they recognized that their disks constructed in GSP needed to be small to accurately identify points where the function is non-differentiable, and to stay away from the “bad points” when determining differentiability. More... »

PAGES

3-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40753-018-0081-x

DOI

http://dx.doi.org/10.1007/s40753-018-0081-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110012530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oklahoma", 
          "id": "https://www.grid.ac/institutes/grid.266900.b", 
          "name": [
            "University of Oklahoma, Norman, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Troup", 
        "givenName": "Jonathan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3758/bf03196322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002296955", 
          "https://doi.org/10.3758/bf03196322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10508406.2011.611445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008481093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012789201736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010094391", 
          "https://doi.org/10.1023/a:1012789201736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00305619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012824368", 
          "https://doi.org/10.1007/bf00305619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10857-014-9288-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014211108", 
          "https://doi.org/10.1007/s10857-014-9288-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(03)00054-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020372502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(03)00054-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020372502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10649-011-9364-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021854286", 
          "https://doi.org/10.1007/s10649-011-9364-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00302715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028982638", 
          "https://doi.org/10.1007/bf00302715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207390600712281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030191932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/009365090017001002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035829274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/009365090017001002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035829274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmathb.2004.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036081734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10508406.2011.611446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036470225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03217474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041743303", 
          "https://doi.org/10.1007/bf03217474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10817-015-9326-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044013188", 
          "https://doi.org/10.1007/s10817-015-9326-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10817-015-9326-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044013188", 
          "https://doi.org/10.1007/s10817-015-9326-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0732-3123(96)90015-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044235623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmathb.2014.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049734327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3102/00346543068001035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070970307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3102/00346543068001035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070970307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5642/jhummath.201302.03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073061136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.51-5072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073467378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40751-017-0032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040698", 
          "https://doi.org/10.1007/s40751-017-0032-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40751-017-0032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040698", 
          "https://doi.org/10.1007/s40751-017-0032-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139565202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098678209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1554-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718279", 
          "https://doi.org/10.1007/978-94-017-1554-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1554-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718279", 
          "https://doi.org/10.1007/978-94-017-1554-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this study, a description is provided for the development of two undergraduate students\u2019 geometric reasoning about the derivative of a complex-valued function with the aid of Geometer\u2019s Sketchpad (GSP) during an interview sequence designed to help them characterize the derivative geometrically. Specifically, a particular GSP task at the end of this interview sequence aided the participants in viewing the derivative as a local property. This advancement is notable as previous participants had been largely unable to make this characterization precisely, and the participants of this study only did so while working on the final task of the interview sequence. This task required students to determine an algebraic formula given only geometric data through GSP. Particularly, they recognized that their disks constructed in GSP needed to be small to accurately identify points where the function is non-differentiable, and to stay away from the \u201cbad points\u201d when determining differentiability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40753-018-0081-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136833", 
        "issn": [
          "2198-9745", 
          "2198-9753"
        ], 
        "name": "International Journal of Research in Undergraduate Mathematics Education", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Developing Reasoning about the Derivative of a Complex-Valued Function with the Aid of Geometer\u2019s Sketchpad", 
    "pagination": "3-26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b11881c93760fc8251e543fddb277044dec8e53403f3a258cfac16646f488f15"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40753-018-0081-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110012530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40753-018-0081-x", 
      "https://app.dimensions.ai/details/publication/pub.1110012530"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40753-018-0081-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40753-018-0081-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40753-018-0081-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40753-018-0081-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40753-018-0081-x'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40753-018-0081-x schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N767944b6aa7d44f8a5c7885d6f3f63c7
4 schema:citation sg:pub.10.1007/978-94-017-1554-6
5 sg:pub.10.1007/bf00302715
6 sg:pub.10.1007/bf00305619
7 sg:pub.10.1007/bf03217474
8 sg:pub.10.1007/s10649-011-9364-8
9 sg:pub.10.1007/s10817-015-9326-4
10 sg:pub.10.1007/s10857-014-9288-1
11 sg:pub.10.1007/s40751-017-0032-1
12 sg:pub.10.1023/a:1012789201736
13 sg:pub.10.3758/bf03196322
14 https://doi.org/10.1016/j.jmathb.2004.06.003
15 https://doi.org/10.1016/j.jmathb.2014.09.004
16 https://doi.org/10.1016/s0004-3702(03)00054-7
17 https://doi.org/10.1016/s0732-3123(96)90015-2
18 https://doi.org/10.1017/cbo9781139565202
19 https://doi.org/10.1080/00207390600712281
20 https://doi.org/10.1080/10508406.2011.611445
21 https://doi.org/10.1080/10508406.2011.611446
22 https://doi.org/10.1177/009365090017001002
23 https://doi.org/10.3102/00346543068001035
24 https://doi.org/10.5642/jhummath.201302.03
25 https://doi.org/10.5860/choice.51-5072
26 schema:datePublished 2019-04
27 schema:datePublishedReg 2019-04-01
28 schema:description In this study, a description is provided for the development of two undergraduate students’ geometric reasoning about the derivative of a complex-valued function with the aid of Geometer’s Sketchpad (GSP) during an interview sequence designed to help them characterize the derivative geometrically. Specifically, a particular GSP task at the end of this interview sequence aided the participants in viewing the derivative as a local property. This advancement is notable as previous participants had been largely unable to make this characterization precisely, and the participants of this study only did so while working on the final task of the interview sequence. This task required students to determine an algebraic formula given only geometric data through GSP. Particularly, they recognized that their disks constructed in GSP needed to be small to accurately identify points where the function is non-differentiable, and to stay away from the “bad points” when determining differentiability.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N0668ed2a3e52481ca940a4d0d3792228
33 N95f4c6dd908642e79906d4b911450d8a
34 sg:journal.1136833
35 schema:name Developing Reasoning about the Derivative of a Complex-Valued Function with the Aid of Geometer’s Sketchpad
36 schema:pagination 3-26
37 schema:productId N1a56bc36484544c480269aa894b91532
38 N72eb747193c94b97957c03f38910beb7
39 Nda5e80f0ba8b4a64b2b9eef70171998e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110012530
41 https://doi.org/10.1007/s40753-018-0081-x
42 schema:sdDatePublished 2019-04-11T13:18
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N4377f3387f014d528a31d923cbcce50b
45 schema:url https://link.springer.com/10.1007%2Fs40753-018-0081-x
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0668ed2a3e52481ca940a4d0d3792228 schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 N10316c544a734505ac8310b2e08aa0ef schema:affiliation https://www.grid.ac/institutes/grid.266900.b
52 schema:familyName Troup
53 schema:givenName Jonathan
54 rdf:type schema:Person
55 N1a56bc36484544c480269aa894b91532 schema:name dimensions_id
56 schema:value pub.1110012530
57 rdf:type schema:PropertyValue
58 N4377f3387f014d528a31d923cbcce50b schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N72eb747193c94b97957c03f38910beb7 schema:name doi
61 schema:value 10.1007/s40753-018-0081-x
62 rdf:type schema:PropertyValue
63 N767944b6aa7d44f8a5c7885d6f3f63c7 rdf:first N10316c544a734505ac8310b2e08aa0ef
64 rdf:rest rdf:nil
65 N95f4c6dd908642e79906d4b911450d8a schema:volumeNumber 5
66 rdf:type schema:PublicationVolume
67 Nda5e80f0ba8b4a64b2b9eef70171998e schema:name readcube_id
68 schema:value b11881c93760fc8251e543fddb277044dec8e53403f3a258cfac16646f488f15
69 rdf:type schema:PropertyValue
70 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
71 schema:name Medical and Health Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
74 schema:name Clinical Sciences
75 rdf:type schema:DefinedTerm
76 sg:journal.1136833 schema:issn 2198-9745
77 2198-9753
78 schema:name International Journal of Research in Undergraduate Mathematics Education
79 rdf:type schema:Periodical
80 sg:pub.10.1007/978-94-017-1554-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109718279
81 https://doi.org/10.1007/978-94-017-1554-6
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf00302715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028982638
84 https://doi.org/10.1007/bf00302715
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf00305619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012824368
87 https://doi.org/10.1007/bf00305619
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf03217474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041743303
90 https://doi.org/10.1007/bf03217474
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10649-011-9364-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021854286
93 https://doi.org/10.1007/s10649-011-9364-8
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10817-015-9326-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044013188
96 https://doi.org/10.1007/s10817-015-9326-4
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10857-014-9288-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014211108
99 https://doi.org/10.1007/s10857-014-9288-1
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s40751-017-0032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084040698
102 https://doi.org/10.1007/s40751-017-0032-1
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/a:1012789201736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010094391
105 https://doi.org/10.1023/a:1012789201736
106 rdf:type schema:CreativeWork
107 sg:pub.10.3758/bf03196322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002296955
108 https://doi.org/10.3758/bf03196322
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jmathb.2004.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036081734
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jmathb.2014.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049734327
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0004-3702(03)00054-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020372502
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0732-3123(96)90015-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044235623
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/cbo9781139565202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098678209
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/00207390600712281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030191932
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/10508406.2011.611445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008481093
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/10508406.2011.611446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036470225
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1177/009365090017001002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035829274
127 rdf:type schema:CreativeWork
128 https://doi.org/10.3102/00346543068001035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070970307
129 rdf:type schema:CreativeWork
130 https://doi.org/10.5642/jhummath.201302.03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073061136
131 rdf:type schema:CreativeWork
132 https://doi.org/10.5860/choice.51-5072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073467378
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.266900.b schema:alternateName University of Oklahoma
135 schema:name University of Oklahoma, Norman, OK, USA
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...