Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

Abid Hussain, Yousaf Shad Muhammad

ABSTRACT

As an intelligent search optimization technique, genetic algorithm (GA) is an important approach for non-deterministic polynomial (NP-hard) and complex nature optimization problems. GA has some internal weakness such as premature convergence and low computation efficiency, etc. Improving the performance of GA is a vital topic for complex nature optimization problems. The selection operator is a crucial strategy in GA, because it has a vital role in exploring the new areas of the search space and converges the algorithm, as well. The fitness proportional selection scheme has essence exploitation and the linear rank selection is influenced by exploration. In this article, we proposed a new selection scheme which is the optimal combination of exploration and exploitation. This eliminates the fitness scaling issue and adjusts the selection pressure throughout the selection phase. The χ2 goodness-of-fit test is used to measure the average accuracy, i.e., mean difference between the actual and expected number of offspring. A comparison of the performance of the proposed scheme along with some conventional selection procedures was made using TSPLIB instances. The application of this new operator gives much more effective results regarding the average and standard deviation values. In addition, a two-tailed t test is established and its values showed the significantly improved performance by the proposed scheme. Thus, the new operator is suitable and comparable to established selection for the problems related to traveling salesman problem using GA. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40747-019-0102-7

DOI

http://dx.doi.org/10.1007/s40747-019-0102-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113200208


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussain", 
        "givenName": "Abid", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muhammad", 
        "givenName": "Yousaf Shad", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40747-016-0010-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855144", 
          "https://doi.org/10.1007/s40747-016-0010-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-016-0010-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855144", 
          "https://doi.org/10.1007/s40747-016-0010-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006529012972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009570302", 
          "https://doi.org/10.1023/a:1006529012972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/369369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011266206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2014.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012274925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.07.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014393237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-050684-5.50008-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014728187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2013.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015050996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.07.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015530137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018694346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.2014.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021669263", 
          "https://doi.org/10.1057/jors.2014.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(01)00227-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021681035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2010.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021962522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01969720802492967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021992981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365601750190424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022364955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jestch.2016.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026145602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(99)00284-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026615760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2013.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028016369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029496834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02125403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029838310", 
          "https://doi.org/10.1007/bf02125403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02125403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029838310", 
          "https://doi.org/10.1007/bf02125403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/3672758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033917648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035063790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1986.289288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129626415400058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062907630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09596518jsce942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064456792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09596518jsce942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064456792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12785/amis/070529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064668505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14569/ijacsa.2011.020104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067337881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/7430125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092341716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.1999.782661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093956957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2005.1554796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094749934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1887/0750306645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099106589"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "As an intelligent search optimization technique, genetic algorithm (GA) is an important approach for non-deterministic polynomial (NP-hard) and complex nature optimization problems. GA has some internal weakness such as premature convergence and low computation efficiency, etc. Improving the performance of GA is a vital topic for complex nature optimization problems. The selection operator is a crucial strategy in GA, because it has a vital role in exploring the new areas of the search space and converges the algorithm, as well. The fitness proportional selection scheme has essence exploitation and the linear rank selection is influenced by exploration. In this article, we proposed a new selection scheme which is the optimal combination of exploration and exploitation. This eliminates the fitness scaling issue and adjusts the selection pressure throughout the selection phase. The \u03c72 goodness-of-fit test is used to measure the average accuracy, i.e., mean difference between the actual and expected number of offspring. A comparison of the performance of the proposed scheme along with some conventional selection procedures was made using TSPLIB instances. The application of this new operator gives much more effective results regarding the average and standard deviation values. In addition, a two-tailed t test is established and its values showed the significantly improved performance by the proposed scheme. Thus, the new operator is suitable and comparable to established selection for the problems related to traveling salesman problem using GA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40747-019-0102-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136144", 
        "issn": [
          "2199-4536", 
          "2198-6053"
        ], 
        "name": "Complex & Intelligent Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40747-019-0102-7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f209ee35a524ec2634e874797833df296f8209099540954a19ee629c4baf8f13"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113200208"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40747-019-0102-7", 
      "https://app.dimensions.ai/details/publication/pub.1113200208"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56158_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40747-019-0102-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-019-0102-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-019-0102-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-019-0102-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-019-0102-7'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40747-019-0102-7 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N56e1d0da1e0f4126b75bcf896dc1295b
4 schema:citation sg:pub.10.1007/bf02125403
5 sg:pub.10.1007/s40747-016-0010-z
6 sg:pub.10.1023/a:1006529012972
7 sg:pub.10.1057/jors.2014.88
8 https://doi.org/10.1016/b978-0-08-050684-5.50008-2
9 https://doi.org/10.1016/j.cor.2013.08.017
10 https://doi.org/10.1016/j.cor.2014.11.011
11 https://doi.org/10.1016/j.ejor.2013.01.043
12 https://doi.org/10.1016/j.eswa.2005.09.042
13 https://doi.org/10.1016/j.eswa.2008.08.025
14 https://doi.org/10.1016/j.eswa.2012.02.029
15 https://doi.org/10.1016/j.eswa.2013.07.054
16 https://doi.org/10.1016/j.eswa.2014.07.039
17 https://doi.org/10.1016/j.ins.2010.05.001
18 https://doi.org/10.1016/j.jestch.2016.08.003
19 https://doi.org/10.1016/s0377-2217(01)00227-2
20 https://doi.org/10.1016/s0377-2217(99)00284-2
21 https://doi.org/10.1080/01969720802492967
22 https://doi.org/10.1109/cec.1999.782661
23 https://doi.org/10.1109/cec.2005.1554796
24 https://doi.org/10.1109/tsmc.1986.289288
25 https://doi.org/10.1142/s0129626415400058
26 https://doi.org/10.1155/2014/369369
27 https://doi.org/10.1155/2016/3672758
28 https://doi.org/10.1155/2017/7430125
29 https://doi.org/10.1162/106365601750190424
30 https://doi.org/10.1243/09596518jsce942
31 https://doi.org/10.12785/amis/070529
32 https://doi.org/10.14569/ijacsa.2011.020104
33 https://doi.org/10.1887/0750306645
34 schema:datePublished 2019-04-02
35 schema:datePublishedReg 2019-04-02
36 schema:description As an intelligent search optimization technique, genetic algorithm (GA) is an important approach for non-deterministic polynomial (NP-hard) and complex nature optimization problems. GA has some internal weakness such as premature convergence and low computation efficiency, etc. Improving the performance of GA is a vital topic for complex nature optimization problems. The selection operator is a crucial strategy in GA, because it has a vital role in exploring the new areas of the search space and converges the algorithm, as well. The fitness proportional selection scheme has essence exploitation and the linear rank selection is influenced by exploration. In this article, we proposed a new selection scheme which is the optimal combination of exploration and exploitation. This eliminates the fitness scaling issue and adjusts the selection pressure throughout the selection phase. The χ2 goodness-of-fit test is used to measure the average accuracy, i.e., mean difference between the actual and expected number of offspring. A comparison of the performance of the proposed scheme along with some conventional selection procedures was made using TSPLIB instances. The application of this new operator gives much more effective results regarding the average and standard deviation values. In addition, a two-tailed t test is established and its values showed the significantly improved performance by the proposed scheme. Thus, the new operator is suitable and comparable to established selection for the problems related to traveling salesman problem using GA.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1136144
41 schema:name Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator
42 schema:pagination 1-14
43 schema:productId N52ab0a53af3a46469de3e4f6b2ef1ba5
44 N7caf08d4705c430d93155efa086d2d71
45 Nff59c91fe00d4a08942f716071f75197
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113200208
47 https://doi.org/10.1007/s40747-019-0102-7
48 schema:sdDatePublished 2019-04-15T09:11
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N920bc238231841e3b0162e542bd71537
51 schema:url https://link.springer.com/10.1007%2Fs40747-019-0102-7
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N05821c65f3204433959d367dd4dcbfaf rdf:first N531e6241f967459c97000de0192031db
56 rdf:rest rdf:nil
57 N4ce3ee81fe134fdf937708ba28adda70 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
58 schema:familyName Hussain
59 schema:givenName Abid
60 rdf:type schema:Person
61 N52ab0a53af3a46469de3e4f6b2ef1ba5 schema:name doi
62 schema:value 10.1007/s40747-019-0102-7
63 rdf:type schema:PropertyValue
64 N531e6241f967459c97000de0192031db schema:affiliation https://www.grid.ac/institutes/grid.412621.2
65 schema:familyName Muhammad
66 schema:givenName Yousaf Shad
67 rdf:type schema:Person
68 N56e1d0da1e0f4126b75bcf896dc1295b rdf:first N4ce3ee81fe134fdf937708ba28adda70
69 rdf:rest N05821c65f3204433959d367dd4dcbfaf
70 N7caf08d4705c430d93155efa086d2d71 schema:name readcube_id
71 schema:value f209ee35a524ec2634e874797833df296f8209099540954a19ee629c4baf8f13
72 rdf:type schema:PropertyValue
73 N920bc238231841e3b0162e542bd71537 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nff59c91fe00d4a08942f716071f75197 schema:name dimensions_id
76 schema:value pub.1113200208
77 rdf:type schema:PropertyValue
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
82 schema:name Numerical and Computational Mathematics
83 rdf:type schema:DefinedTerm
84 sg:journal.1136144 schema:issn 2198-6053
85 2199-4536
86 schema:name Complex & Intelligent Systems
87 rdf:type schema:Periodical
88 sg:pub.10.1007/bf02125403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029838310
89 https://doi.org/10.1007/bf02125403
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s40747-016-0010-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004855144
92 https://doi.org/10.1007/s40747-016-0010-z
93 rdf:type schema:CreativeWork
94 sg:pub.10.1023/a:1006529012972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009570302
95 https://doi.org/10.1023/a:1006529012972
96 rdf:type schema:CreativeWork
97 sg:pub.10.1057/jors.2014.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021669263
98 https://doi.org/10.1057/jors.2014.88
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/b978-0-08-050684-5.50008-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014728187
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.cor.2013.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028016369
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.cor.2014.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012274925
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.ejor.2013.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015050996
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.eswa.2005.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035063790
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.eswa.2008.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018694346
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.eswa.2012.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029496834
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.eswa.2013.07.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015530137
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.eswa.2014.07.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014393237
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ins.2010.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021962522
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jestch.2016.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026145602
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0377-2217(01)00227-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021681035
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0377-2217(99)00284-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026615760
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/01969720802492967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021992981
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/cec.1999.782661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093956957
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/cec.2005.1554796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094749934
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tsmc.1986.289288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793830
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1142/s0129626415400058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062907630
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1155/2014/369369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011266206
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1155/2016/3672758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033917648
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1155/2017/7430125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092341716
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1162/106365601750190424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022364955
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1243/09596518jsce942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064456792
145 rdf:type schema:CreativeWork
146 https://doi.org/10.12785/amis/070529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064668505
147 rdf:type schema:CreativeWork
148 https://doi.org/10.14569/ijacsa.2011.020104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067337881
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1887/0750306645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099106589
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.412621.2 schema:alternateName Quaid-i-Azam University
153 schema:name Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...