High efficiency fault-detection and fault-tolerant control approach in Tennessee Eastman process via fuzzy-based neural network representation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-06

AUTHORS

M. Adeli, A. H. Mazinan

ABSTRACT

We looked at the background of fault-detection and fault-tolerant control algorithms to propose a new high efficiency one with a focus on Tennessee Eastman process through fuzzy-based neural network representation. Due to the fact that the open-loop system may not be stabilized, an advanced control strategy to generate proper control signals needs to be designed. At first, to detect and identify the fault, data preprocessing theories have been considered. Based upon the matter disclosed, to provide a reliable decision-maker block, fusion classifier idea has been realized. For this one, raw data, time, and frequency characteristics are divided into various classification tools and finally the obtained knowledge combination regarding each one of them is adopted. It should be noted that the proposed implementation tools are taken into real consideration as the fuzzy-based neural network representation. Subsequently, the fault-tolerant control approach based on local controller regulation in case of each fault occurrence has been researched, which the investigated outcomes emphasize the effectiveness of the approach proposed here. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40747-019-0094-3

DOI

http://dx.doi.org/10.1007/s40747-019-0094-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112587792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Tehran", 
          "id": "https://www.grid.ac/institutes/grid.411463.5", 
          "name": [
            "Department of Control Engineering, South Tehran Branch, Islamic Azad University (IAU), No. 209, North Iranshahr St., P.O. Box 11365/4435, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adeli", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Tehran", 
          "id": "https://www.grid.ac/institutes/grid.411463.5", 
          "name": [
            "Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University (IAU), No. 209, North Iranshahr St., P.O. Box 11365/4435, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazinan", 
        "givenName": "A. H.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0098-1354(94)88019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002155076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-1354(93)80018-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002158312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004219197", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004219197", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprocont.2012.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008872142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12530-015-9136-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015086504", 
          "https://doi.org/10.1007/s12530-015-9136-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015866651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0959-1524(96)00031-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019871574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2015.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022461800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-13020-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022569153", 
          "https://doi.org/10.1007/978-3-658-13020-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-658-13020-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022569153", 
          "https://doi.org/10.1007/978-3-658-13020-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1025518981", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0347-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025518981", 
          "https://doi.org/10.1007/978-1-4471-0347-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0347-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025518981", 
          "https://doi.org/10.1007/978-1-4471-0347-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifacol.2015.08.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032028172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-1354(94)00057-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033944006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039979975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040049970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04323-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041627718", 
          "https://doi.org/10.1007/978-3-662-04323-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04323-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041627718", 
          "https://doi.org/10.1007/978-3-662-04323-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ed061p494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055455297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2017.03.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084752157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2017.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090351518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0051-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090954598", 
          "https://doi.org/10.1007/s40747-017-0051-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0051-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090954598", 
          "https://doi.org/10.1007/s40747-017-0051-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/4180510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091208294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091517215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2017.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092690664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0063-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092809054", 
          "https://doi.org/10.1007/s40747-017-0063-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2017.11.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092958502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2017.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099630636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2017.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099723714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2018.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101627562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-018-0077-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104651971", 
          "https://doi.org/10.1007/s40747-018-0077-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-018-0077-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104651971", 
          "https://doi.org/10.1007/s40747-018-0077-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-018-0077-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104651971", 
          "https://doi.org/10.1007/s40747-018-0077-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-018-0077-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104651971", 
          "https://doi.org/10.1007/s40747-018-0077-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2018.12.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110954663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2018.12.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110954663"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-06", 
    "datePublishedReg": "2019-03-06", 
    "description": "We looked at the background of fault-detection and fault-tolerant control algorithms to propose a new high efficiency one with a focus on Tennessee Eastman process through fuzzy-based neural network representation. Due to the fact that the open-loop system may not be stabilized, an advanced control strategy to generate proper control signals needs to be designed. At first, to detect and identify the fault, data preprocessing theories have been considered. Based upon the matter disclosed, to provide a reliable decision-maker block, fusion classifier idea has been realized. For this one, raw data, time, and frequency characteristics are divided into various classification tools and finally the obtained knowledge combination regarding each one of them is adopted. It should be noted that the proposed implementation tools are taken into real consideration as the fuzzy-based neural network representation. Subsequently, the fault-tolerant control approach based on local controller regulation in case of each fault occurrence has been researched, which the investigated outcomes emphasize the effectiveness of the approach proposed here.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40747-019-0094-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136144", 
        "issn": [
          "2199-4536", 
          "2198-6053"
        ], 
        "name": "Complex & Intelligent Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "High efficiency fault-detection and fault-tolerant control approach in Tennessee Eastman process via fuzzy-based neural network representation", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a67b12d0b0e2ca40e7ef4c19d62a83c4e9968967d8a1c8c10656f2fef6bc2de4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40747-019-0094-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112587792"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40747-019-0094-3", 
      "https://app.dimensions.ai/details/publication/pub.1112587792"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45335_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40747-019-0094-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-019-0094-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-019-0094-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-019-0094-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-019-0094-3'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40747-019-0094-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N785f255451f84882815c4c5bdf3b35b8
4 schema:citation sg:pub.10.1007/978-1-4471-0347-9
5 sg:pub.10.1007/978-3-658-13020-6
6 sg:pub.10.1007/978-3-662-04323-3
7 sg:pub.10.1007/s12530-015-9136-2
8 sg:pub.10.1007/s40747-017-0051-y
9 sg:pub.10.1007/s40747-017-0063-7
10 sg:pub.10.1007/s40747-018-0077-9
11 https://app.dimensions.ai/details/publication/pub.1004219197
12 https://app.dimensions.ai/details/publication/pub.1025518981
13 https://doi.org/10.1016/0098-1354(93)80018-i
14 https://doi.org/10.1016/0098-1354(94)00057-u
15 https://doi.org/10.1016/0098-1354(94)88019-0
16 https://doi.org/10.1016/0959-1524(96)00031-5
17 https://doi.org/10.1016/j.asoc.2016.12.015
18 https://doi.org/10.1016/j.asoc.2017.03.048
19 https://doi.org/10.1016/j.engappai.2017.06.007
20 https://doi.org/10.1016/j.engappai.2018.02.014
21 https://doi.org/10.1016/j.eswa.2015.03.034
22 https://doi.org/10.1016/j.ifacol.2015.08.199
23 https://doi.org/10.1016/j.inffus.2015.07.001
24 https://doi.org/10.1016/j.ins.2015.02.020
25 https://doi.org/10.1016/j.ins.2017.09.031
26 https://doi.org/10.1016/j.jprocont.2012.06.009
27 https://doi.org/10.1016/j.measurement.2017.11.035
28 https://doi.org/10.1016/j.measurement.2017.11.049
29 https://doi.org/10.1016/j.measurement.2017.12.010
30 https://doi.org/10.1016/j.measurement.2017.12.026
31 https://doi.org/10.1016/j.neucom.2018.12.041
32 https://doi.org/10.1021/ed061p494
33 https://doi.org/10.1155/2017/4180510
34 schema:datePublished 2019-03-06
35 schema:datePublishedReg 2019-03-06
36 schema:description We looked at the background of fault-detection and fault-tolerant control algorithms to propose a new high efficiency one with a focus on Tennessee Eastman process through fuzzy-based neural network representation. Due to the fact that the open-loop system may not be stabilized, an advanced control strategy to generate proper control signals needs to be designed. At first, to detect and identify the fault, data preprocessing theories have been considered. Based upon the matter disclosed, to provide a reliable decision-maker block, fusion classifier idea has been realized. For this one, raw data, time, and frequency characteristics are divided into various classification tools and finally the obtained knowledge combination regarding each one of them is adopted. It should be noted that the proposed implementation tools are taken into real consideration as the fuzzy-based neural network representation. Subsequently, the fault-tolerant control approach based on local controller regulation in case of each fault occurrence has been researched, which the investigated outcomes emphasize the effectiveness of the approach proposed here.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1136144
41 schema:name High efficiency fault-detection and fault-tolerant control approach in Tennessee Eastman process via fuzzy-based neural network representation
42 schema:pagination 1-14
43 schema:productId N30235e890eea4ad79bbe042d35ff5b58
44 N658353cc938242c4b6b323aed18e5be0
45 Nea1d94ca2a85430581a8ebdad39234f3
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112587792
47 https://doi.org/10.1007/s40747-019-0094-3
48 schema:sdDatePublished 2019-04-11T11:09
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N0578d586c20a47a78f19f7f4b55b61fd
51 schema:url https://link.springer.com/10.1007%2Fs40747-019-0094-3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0578d586c20a47a78f19f7f4b55b61fd schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N26ab89d470dd4afebdc5b2829523157b schema:affiliation https://www.grid.ac/institutes/grid.411463.5
58 schema:familyName Mazinan
59 schema:givenName A. H.
60 rdf:type schema:Person
61 N2e4de7e899b0486bbdb1dc455935051e schema:affiliation https://www.grid.ac/institutes/grid.411463.5
62 schema:familyName Adeli
63 schema:givenName M.
64 rdf:type schema:Person
65 N30235e890eea4ad79bbe042d35ff5b58 schema:name dimensions_id
66 schema:value pub.1112587792
67 rdf:type schema:PropertyValue
68 N658353cc938242c4b6b323aed18e5be0 schema:name doi
69 schema:value 10.1007/s40747-019-0094-3
70 rdf:type schema:PropertyValue
71 N785f255451f84882815c4c5bdf3b35b8 rdf:first N2e4de7e899b0486bbdb1dc455935051e
72 rdf:rest Nca0f6f6e15da46ad8a24ae510608b1ab
73 Nca0f6f6e15da46ad8a24ae510608b1ab rdf:first N26ab89d470dd4afebdc5b2829523157b
74 rdf:rest rdf:nil
75 Nea1d94ca2a85430581a8ebdad39234f3 schema:name readcube_id
76 schema:value a67b12d0b0e2ca40e7ef4c19d62a83c4e9968967d8a1c8c10656f2fef6bc2de4
77 rdf:type schema:PropertyValue
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:journal.1136144 schema:issn 2198-6053
85 2199-4536
86 schema:name Complex & Intelligent Systems
87 rdf:type schema:Periodical
88 sg:pub.10.1007/978-1-4471-0347-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025518981
89 https://doi.org/10.1007/978-1-4471-0347-9
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-3-658-13020-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022569153
92 https://doi.org/10.1007/978-3-658-13020-6
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-3-662-04323-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041627718
95 https://doi.org/10.1007/978-3-662-04323-3
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s12530-015-9136-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015086504
98 https://doi.org/10.1007/s12530-015-9136-2
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s40747-017-0051-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090954598
101 https://doi.org/10.1007/s40747-017-0051-y
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s40747-017-0063-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092809054
104 https://doi.org/10.1007/s40747-017-0063-7
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s40747-018-0077-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104651971
107 https://doi.org/10.1007/s40747-018-0077-9
108 rdf:type schema:CreativeWork
109 https://app.dimensions.ai/details/publication/pub.1004219197 schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1025518981 schema:CreativeWork
111 https://doi.org/10.1016/0098-1354(93)80018-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1002158312
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0098-1354(94)00057-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1033944006
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0098-1354(94)88019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002155076
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0959-1524(96)00031-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019871574
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.asoc.2016.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040049970
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.asoc.2017.03.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084752157
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.engappai.2017.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090351518
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.engappai.2018.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101627562
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.eswa.2015.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015866651
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ifacol.2015.08.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032028172
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.inffus.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022461800
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ins.2015.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039979975
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ins.2017.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091517215
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jprocont.2012.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008872142
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.measurement.2017.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092690664
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.measurement.2017.11.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092958502
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.measurement.2017.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099630636
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.measurement.2017.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099723714
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.neucom.2018.12.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110954663
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/ed061p494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055455297
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1155/2017/4180510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091208294
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.411463.5 schema:alternateName Islamic Azad University, Tehran
154 schema:name Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University (IAU), No. 209, North Iranshahr St., P.O. Box 11365/4435, Tehran, Iran
155 Department of Control Engineering, South Tehran Branch, Islamic Azad University (IAU), No. 209, North Iranshahr St., P.O. Box 11365/4435, Tehran, Iran
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...