Multi-granulation Pythagorean fuzzy decision-theoretic rough sets based on inclusion measure and their application in incomplete multi-source information systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-09

AUTHORS

Prasenjit Mandal, A. S. Ranadive

ABSTRACT

Multi-granulation rough sets (MGRSs) and decision-theoretic rough sets (DTRSs) are two important and popular generalizations of classical rough sets. The combination of two generalized rough sets have been investigated by numerous researchers in different extensions of fuzzy settings such as interval-valued fuzzy sets (IVFSs), intuitionistic fuzzy sets (IFSs), bipolar-valued fuzzy sets (BVFSs), etc. Pythagorean fuzzy (PF) set is another extension of fuzzy set, which is more capable in comparison to IFS handle vagueness in real world. However, few studies have focused on the combination of the two rough sets in PF settings. In this study, we combine the two generalized rough sets in PF settings. First, we introduce a type of PF subset (of subset of the given universe) of the PF Set (of the given universe). Then we establish two basic models of multi-granulation PF DTRS (MG-PF-DTRS) of PF subset of the PF set based on PF inclusion measure within the framework of multi-granulation PF approximation space. One model is based on a combination of PF relations (PFRs) and the construction of approximations with respect to the combined PFR. By combining PFRs through intersection and union, respectively, we construct two models. The other model is based on the construction of approximations from PFRs and a combination of the approximations. By using intersection and union to combine the approximations, respectively, we again get two models. As a result, we have total four models. Further for different constraints on parameters, we obtain three kinds of each model of the MG-PF-DTRSs. Then, their principal structure, basic properties and uncertainty measure methods are investigated as well. Second, we give a way to compute PF similarity degrees between two objects and also give a way to compute PF decision-making objects from incomplete multi-source information systems (IMSISs). Then we design an algorithm for decision-making to IMSISs using MG-PFDTRSs and their uncertainty measure methods. Finally, an example about the mutual funds investment is included to show the feasibility and potential of the theoretic results obtained. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40747-018-0090-z

DOI

http://dx.doi.org/10.1007/s40747-018-0090-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111309940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Bhalukdungri Jr. High School, Raigara, 723153, Purulia, WB, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandal", 
        "givenName": "Prasenjit", 
        "id": "sg:person.013402703547.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013402703547.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guru Ghasidas Vishwavidyalaya", 
          "id": "https://www.grid.ac/institutes/grid.444339.d", 
          "name": [
            "Department of Pure and Applied Mathematics, Guru Ghasidas University, Bilaspur, CG, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ranadive", 
        "givenName": "A. S.", 
        "id": "sg:person.013334435243.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334435243.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ins.2016.04.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000952576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006681780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.12.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009634704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010795809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(86)80034-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015317579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.10.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016863149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019392765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01001956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020579132", 
          "https://doi.org/10.1007/bf01001956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022437250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7373(92)90069-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024441361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.01.098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024610939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028423699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028915531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029832848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2016.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035313134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2011.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035397403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040680829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2015.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046341024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.06.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047918169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.07.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054740065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2013.2278989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ifs-162165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071127172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10588-017-9242-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083741192", 
          "https://doi.org/10.1007/s10588-017-9242-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10588-017-9242-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083741192", 
          "https://doi.org/10.1007/s10588-017-9242-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083878694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083893914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2017.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084079343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-017-2765-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091240870", 
          "https://doi.org/10.1007/s00500-017-2765-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2017.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092056017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100164430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2018.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100269002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100553462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101077905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101518121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-018-0090-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101849080", 
          "https://doi.org/10.1007/s41066-018-0090-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-018-0090-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101849080", 
          "https://doi.org/10.1007/s41066-018-0090-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2018020979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103571712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0952813x.2018.1467497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104120304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-018-0111-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105307045", 
          "https://doi.org/10.1007/s41066-018-0111-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-018-0111-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105307045", 
          "https://doi.org/10.1007/s41066-018-0111-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-018-0118-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105760783", 
          "https://doi.org/10.1007/s41066-018-0118-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-018-0118-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105760783", 
          "https://doi.org/10.1007/s41066-018-0118-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-018-3411-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105830359", 
          "https://doi.org/10.1007/s00500-018-3411-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2018.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106366908"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-09", 
    "datePublishedReg": "2019-01-09", 
    "description": "Multi-granulation rough sets (MGRSs) and decision-theoretic rough sets (DTRSs) are two important and popular generalizations of classical rough sets. The combination of two generalized rough sets have been investigated by numerous researchers in different extensions of fuzzy settings such as interval-valued fuzzy sets (IVFSs), intuitionistic fuzzy sets (IFSs), bipolar-valued fuzzy sets (BVFSs), etc. Pythagorean fuzzy (PF) set is another extension of fuzzy set, which is more capable in comparison to IFS handle vagueness in real world. However, few studies have focused on the combination of the two rough sets in PF settings. In this study, we combine the two generalized rough sets in PF settings. First, we introduce a type of PF subset (of subset of the given universe) of the PF Set (of the given universe). Then we establish two basic models of multi-granulation PF DTRS (MG-PF-DTRS) of PF subset of the PF set based on PF inclusion measure within the framework of multi-granulation PF approximation space. One model is based on a combination of PF relations (PFRs) and the construction of approximations with respect to the combined PFR. By combining PFRs through intersection and union, respectively, we construct two models. The other model is based on the construction of approximations from PFRs and a combination of the approximations. By using intersection and union to combine the approximations, respectively, we again get two models. As a result, we have total four models. Further for different constraints on parameters, we obtain three kinds of each model of the MG-PF-DTRSs. Then, their principal structure, basic properties and uncertainty measure methods are investigated as well. Second, we give a way to compute PF similarity degrees between two objects and also give a way to compute PF decision-making objects from incomplete multi-source information systems (IMSISs). Then we design an algorithm for decision-making to IMSISs using MG-PFDTRSs and their uncertainty measure methods. Finally, an example about the mutual funds investment is included to show the feasibility and potential of the theoretic results obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40747-018-0090-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136144", 
        "issn": [
          "2199-4536", 
          "2198-6053"
        ], 
        "name": "Complex & Intelligent Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "Multi-granulation Pythagorean fuzzy decision-theoretic rough sets based on inclusion measure and their application in incomplete multi-source information systems", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f74f42eda7b9b2563f5ae192b3c841b45233363c8830b43619dd05ca8620514"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40747-018-0090-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111309940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40747-018-0090-z", 
      "https://app.dimensions.ai/details/publication/pub.1111309940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6297_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40747-018-0090-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-018-0090-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-018-0090-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-018-0090-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-018-0090-z'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40747-018-0090-z schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N12ae473e3ba9479ab8012ac026f2c9b6
4 schema:citation sg:pub.10.1007/bf01001956
5 sg:pub.10.1007/s00500-017-2765-6
6 sg:pub.10.1007/s00500-018-3411-7
7 sg:pub.10.1007/s10588-017-9242-8
8 sg:pub.10.1007/s41066-018-0090-9
9 sg:pub.10.1007/s41066-018-0111-8
10 sg:pub.10.1007/s41066-018-0118-1
11 https://doi.org/10.1002/int.21676
12 https://doi.org/10.1002/int.21811
13 https://doi.org/10.1002/int.21860
14 https://doi.org/10.1002/int.21880
15 https://doi.org/10.1002/int.21949
16 https://doi.org/10.1002/int.21966
17 https://doi.org/10.1002/int.21969
18 https://doi.org/10.1002/int.21979
19 https://doi.org/10.1016/0020-7373(92)90069-w
20 https://doi.org/10.1016/j.ejor.2016.12.048
21 https://doi.org/10.1016/j.ijar.2015.11.005
22 https://doi.org/10.1016/j.ijar.2017.03.008
23 https://doi.org/10.1016/j.ins.2014.06.045
24 https://doi.org/10.1016/j.ins.2014.12.008
25 https://doi.org/10.1016/j.ins.2014.12.036
26 https://doi.org/10.1016/j.ins.2015.02.002
27 https://doi.org/10.1016/j.ins.2016.01.098
28 https://doi.org/10.1016/j.ins.2016.04.051
29 https://doi.org/10.1016/j.ins.2016.10.041
30 https://doi.org/10.1016/j.ins.2017.02.038
31 https://doi.org/10.1016/j.ins.2018.01.015
32 https://doi.org/10.1016/j.ins.2018.08.061
33 https://doi.org/10.1016/j.knosys.2011.11.003
34 https://doi.org/10.1016/j.knosys.2015.07.025
35 https://doi.org/10.1016/j.knosys.2015.07.036
36 https://doi.org/10.1016/j.knosys.2015.09.018
37 https://doi.org/10.1016/j.knosys.2015.09.022
38 https://doi.org/10.1016/j.knosys.2017.10.003
39 https://doi.org/10.1016/s0165-0114(86)80034-3
40 https://doi.org/10.1080/0952813x.2018.1467497
41 https://doi.org/10.1109/tfuzz.2013.2278989
42 https://doi.org/10.1615/int.j.uncertaintyquantification.2018020979
43 https://doi.org/10.3233/ifs-162165
44 schema:datePublished 2019-01-09
45 schema:datePublishedReg 2019-01-09
46 schema:description Multi-granulation rough sets (MGRSs) and decision-theoretic rough sets (DTRSs) are two important and popular generalizations of classical rough sets. The combination of two generalized rough sets have been investigated by numerous researchers in different extensions of fuzzy settings such as interval-valued fuzzy sets (IVFSs), intuitionistic fuzzy sets (IFSs), bipolar-valued fuzzy sets (BVFSs), etc. Pythagorean fuzzy (PF) set is another extension of fuzzy set, which is more capable in comparison to IFS handle vagueness in real world. However, few studies have focused on the combination of the two rough sets in PF settings. In this study, we combine the two generalized rough sets in PF settings. First, we introduce a type of PF subset (of subset of the given universe) of the PF Set (of the given universe). Then we establish two basic models of multi-granulation PF DTRS (MG-PF-DTRS) of PF subset of the PF set based on PF inclusion measure within the framework of multi-granulation PF approximation space. One model is based on a combination of PF relations (PFRs) and the construction of approximations with respect to the combined PFR. By combining PFRs through intersection and union, respectively, we construct two models. The other model is based on the construction of approximations from PFRs and a combination of the approximations. By using intersection and union to combine the approximations, respectively, we again get two models. As a result, we have total four models. Further for different constraints on parameters, we obtain three kinds of each model of the MG-PF-DTRSs. Then, their principal structure, basic properties and uncertainty measure methods are investigated as well. Second, we give a way to compute PF similarity degrees between two objects and also give a way to compute PF decision-making objects from incomplete multi-source information systems (IMSISs). Then we design an algorithm for decision-making to IMSISs using MG-PFDTRSs and their uncertainty measure methods. Finally, an example about the mutual funds investment is included to show the feasibility and potential of the theoretic results obtained.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1136144
51 schema:name Multi-granulation Pythagorean fuzzy decision-theoretic rough sets based on inclusion measure and their application in incomplete multi-source information systems
52 schema:pagination 1-19
53 schema:productId N48f3e73543f94ed7845592c2719b4d27
54 N4c5e5ac69e734bc39dff2c887d4e41d2
55 N686e0b0647624c4baabe20420efa445c
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111309940
57 https://doi.org/10.1007/s40747-018-0090-z
58 schema:sdDatePublished 2019-04-11T08:37
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N7d7b60f1fe5a4d0db595f6cb6cfdc615
61 schema:url https://link.springer.com/10.1007%2Fs40747-018-0090-z
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N12ae473e3ba9479ab8012ac026f2c9b6 rdf:first sg:person.013402703547.19
66 rdf:rest N23b22726a7034f709c3ac40e46b7069b
67 N23b22726a7034f709c3ac40e46b7069b rdf:first sg:person.013334435243.69
68 rdf:rest rdf:nil
69 N48f3e73543f94ed7845592c2719b4d27 schema:name dimensions_id
70 schema:value pub.1111309940
71 rdf:type schema:PropertyValue
72 N4c5e5ac69e734bc39dff2c887d4e41d2 schema:name readcube_id
73 schema:value 4f74f42eda7b9b2563f5ae192b3c841b45233363c8830b43619dd05ca8620514
74 rdf:type schema:PropertyValue
75 N686e0b0647624c4baabe20420efa445c schema:name doi
76 schema:value 10.1007/s40747-018-0090-z
77 rdf:type schema:PropertyValue
78 N7d7b60f1fe5a4d0db595f6cb6cfdc615 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nd6510d3cf0214723b562c87cc1a74cbf schema:name Bhalukdungri Jr. High School, Raigara, 723153, Purulia, WB, India
81 rdf:type schema:Organization
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information Systems
87 rdf:type schema:DefinedTerm
88 sg:journal.1136144 schema:issn 2198-6053
89 2199-4536
90 schema:name Complex & Intelligent Systems
91 rdf:type schema:Periodical
92 sg:person.013334435243.69 schema:affiliation https://www.grid.ac/institutes/grid.444339.d
93 schema:familyName Ranadive
94 schema:givenName A. S.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334435243.69
96 rdf:type schema:Person
97 sg:person.013402703547.19 schema:affiliation Nd6510d3cf0214723b562c87cc1a74cbf
98 schema:familyName Mandal
99 schema:givenName Prasenjit
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013402703547.19
101 rdf:type schema:Person
102 sg:pub.10.1007/bf01001956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020579132
103 https://doi.org/10.1007/bf01001956
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00500-017-2765-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091240870
106 https://doi.org/10.1007/s00500-017-2765-6
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00500-018-3411-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105830359
109 https://doi.org/10.1007/s00500-018-3411-7
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10588-017-9242-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083741192
112 https://doi.org/10.1007/s10588-017-9242-8
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s41066-018-0090-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101849080
115 https://doi.org/10.1007/s41066-018-0090-9
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s41066-018-0111-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105307045
118 https://doi.org/10.1007/s41066-018-0111-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s41066-018-0118-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105760783
121 https://doi.org/10.1007/s41066-018-0118-1
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/int.21676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029832848
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/int.21811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040680829
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/int.21860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022437250
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/int.21880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083878694
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/int.21949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100164430
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/int.21966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100553462
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/int.21969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101077905
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/int.21979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101518121
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0020-7373(92)90069-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1024441361
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ejor.2016.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035313134
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijar.2015.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046341024
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ijar.2017.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084079343
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ins.2014.06.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047918169
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ins.2014.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006681780
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ins.2014.12.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009634704
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ins.2015.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019392765
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ins.2016.01.098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610939
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ins.2016.04.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000952576
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ins.2016.10.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016863149
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ins.2017.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083893914
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ins.2018.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100269002
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ins.2018.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106366908
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.knosys.2011.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035397403
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.knosys.2015.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010795809
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.knosys.2015.07.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054740065
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.knosys.2015.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028423699
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.knosys.2015.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028915531
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.knosys.2017.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092056017
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0165-0114(86)80034-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015317579
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1080/0952813x.2018.1467497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104120304
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tfuzz.2013.2278989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606757
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1615/int.j.uncertaintyquantification.2018020979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103571712
186 rdf:type schema:CreativeWork
187 https://doi.org/10.3233/ifs-162165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071127172
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.444339.d schema:alternateName Guru Ghasidas Vishwavidyalaya
190 schema:name Department of Pure and Applied Mathematics, Guru Ghasidas University, Bilaspur, CG, India
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...