Deter and protect: crime modeling with multi-agent learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Trevor R. Caskey, James S. Wasek, Anna Y. Franz

ABSTRACT

This paper presents a formal game-theoretic belief learning approach to model criminology’s routine activity theory (RAT). RAT states that for a crime to occur a motivated offender (criminal) and a desirable target (victim) must meet in space and time without the presence of capable guardianship (law enforcement). The novelty in using belief learning to model the dynamics of RAT’s offender, target, and guardian behaviors within an agent-based model is that the agents learn and adapt given observation of other agents’ actions without knowledge of the payoffs that drove the other agents’ choices. This is in contrast to other crime modeling research that has used reinforcement learning where the accumulated rewards gained from prior experiences are used to guide agent learning. This is an important distinction given the dynamics of RAT. It is the presence of the various agent types that provide opportunity for crime to occur, and not the potential for reward. Additionally, the belief learning approach presented fits the observed empirical data of case studies, producing statistically significant results with lower variance when compared to a reinforcement learning approach. Application of this new approach supports law enforcement in developing responses to crime problems and planning for the effects of displacement due to directed responses, thus deterring offenders and protecting the public through crime modeling with multi-agent learning. More... »

PAGES

155-169

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40747-017-0062-8

DOI

http://dx.doi.org/10.1007/s40747-017-0062-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092348504


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Criminology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "The George Washington University, 20052, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caskey", 
        "givenName": "Trevor R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "The George Washington University, 20052, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wasek", 
        "givenName": "James S.", 
        "id": "sg:person.012657343516.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657343516.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "The George Washington University, 20052, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franz", 
        "givenName": "Anna Y.", 
        "id": "sg:person.07616627360.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616627360.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1057/9780230280786_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001685584", 
          "https://doi.org/10.1057/9780230280786_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15223-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002782830", 
          "https://doi.org/10.1007/978-3-642-15223-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15223-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002782830", 
          "https://doi.org/10.1007/978-3-642-15223-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jos.2010.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004833801", 
          "https://doi.org/10.1057/jos.2010.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.082080899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006208454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07418829500096301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007202216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07418829500096301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007202216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-016-0014-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009047471", 
          "https://doi.org/10.1007/s40747-016-0014-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-016-0014-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009047471", 
          "https://doi.org/10.1007/s40747-016-0014-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-016-0015-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014151766", 
          "https://doi.org/10.1007/s40747-016-0015-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-016-0015-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014151766", 
          "https://doi.org/10.1007/s40747-016-0015-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11292-008-9058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022627651", 
          "https://doi.org/10.1007/s11292-008-9058-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compenvurbsys.2012.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026366789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10940-006-9021-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029068903", 
          "https://doi.org/10.1007/s10940-006-9021-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-5893.2007.00294.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033886488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12601-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037686184", 
          "https://doi.org/10.1007/978-3-319-12601-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/game.1995.1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043275461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-016-0012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048331115", 
          "https://doi.org/10.1007/s40747-016-0012-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-016-0012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048331115", 
          "https://doi.org/10.1007/s40747-016-0012-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40163-014-0014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048475955", 
          "https://doi.org/10.1186/s40163-014-0014-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40163-014-0014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048475955", 
          "https://doi.org/10.1186/s40163-014-0014-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-9125.2012.00290.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052160663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11292-014-9208-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053653327", 
          "https://doi.org/10.1007/s11292-014-9208-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792515000571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053976310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/b37120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058157413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/b37120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058157413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/449106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058733762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120895408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202508003029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202510004647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0037549710384124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063682110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0037549710384124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063682110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1043986214525076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063923600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1043986214525076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063923600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1043986214525083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063923606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1043986214525083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063923606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18564/jasss.1498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068662723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2094589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069756540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/allerton.2012.6483443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093660278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/978-1-59904-591-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096031656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1609/aimag.v33i4.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103067103"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "This paper presents a formal game-theoretic belief learning approach to model criminology\u2019s routine activity theory (RAT). RAT states that for a crime to occur a motivated offender (criminal) and a desirable target (victim) must meet in space and time without the presence of capable guardianship (law enforcement). The novelty in using belief learning to model the dynamics of RAT\u2019s offender, target, and guardian behaviors within an agent-based model is that the agents learn and adapt given observation of other agents\u2019 actions without knowledge of the payoffs that drove the other agents\u2019 choices. This is in contrast to other crime modeling research that has used reinforcement learning where the accumulated rewards gained from prior experiences are used to guide agent learning. This is an important distinction given the dynamics of RAT. It is the presence of the various agent types that provide opportunity for crime to occur, and not the potential for reward. Additionally, the belief learning approach presented fits the observed empirical data of case studies, producing statistically significant results with lower variance when compared to a reinforcement learning approach. Application of this new approach supports law enforcement in developing responses to crime problems and planning for the effects of displacement due to directed responses, thus deterring offenders and protecting the public through crime modeling with multi-agent learning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40747-017-0062-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136144", 
        "issn": [
          "2199-4536", 
          "2198-6053"
        ], 
        "name": "Complex & Intelligent Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Deter and protect: crime modeling with multi-agent learning", 
    "pagination": "155-169", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4661d88e5d21c091e26a6fa05cc22ed1e317223e754bc7241741f2ce416840c3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40747-017-0062-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092348504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40747-017-0062-8", 
      "https://app.dimensions.ai/details/publication/pub.1092348504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40747-017-0062-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0062-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0062-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0062-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0062-8'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40747-017-0062-8 schema:about anzsrc-for:16
2 anzsrc-for:1602
3 schema:author N6b1c030603a74e03b894681d1f58c63c
4 schema:citation sg:pub.10.1007/978-3-319-12601-2_1
5 sg:pub.10.1007/978-3-642-15223-8_8
6 sg:pub.10.1007/s10940-006-9021-z
7 sg:pub.10.1007/s11292-008-9058-0
8 sg:pub.10.1007/s11292-014-9208-5
9 sg:pub.10.1007/s40747-016-0012-x
10 sg:pub.10.1007/s40747-016-0014-8
11 sg:pub.10.1007/s40747-016-0015-7
12 sg:pub.10.1057/9780230280786_20
13 sg:pub.10.1057/jos.2010.3
14 sg:pub.10.1186/s40163-014-0014-1
15 https://doi.org/10.1006/game.1995.1023
16 https://doi.org/10.1016/j.compenvurbsys.2012.04.003
17 https://doi.org/10.1017/s0956792515000571
18 https://doi.org/10.1068/b37120
19 https://doi.org/10.1073/pnas.082080899
20 https://doi.org/10.1080/07418829500096301
21 https://doi.org/10.1086/449106
22 https://doi.org/10.1109/allerton.2012.6483443
23 https://doi.org/10.1111/j.1540-5893.2007.00294.x
24 https://doi.org/10.1111/j.1745-9125.2012.00290.x
25 https://doi.org/10.1137/120895408
26 https://doi.org/10.1142/s0218202508003029
27 https://doi.org/10.1142/s0218202510004647
28 https://doi.org/10.1177/0037549710384124
29 https://doi.org/10.1177/1043986214525076
30 https://doi.org/10.1177/1043986214525083
31 https://doi.org/10.1609/aimag.v33i4.2401
32 https://doi.org/10.18564/jasss.1498
33 https://doi.org/10.2307/2094589
34 https://doi.org/10.4018/978-1-59904-591-7
35 schema:datePublished 2018-10
36 schema:datePublishedReg 2018-10-01
37 schema:description This paper presents a formal game-theoretic belief learning approach to model criminology’s routine activity theory (RAT). RAT states that for a crime to occur a motivated offender (criminal) and a desirable target (victim) must meet in space and time without the presence of capable guardianship (law enforcement). The novelty in using belief learning to model the dynamics of RAT’s offender, target, and guardian behaviors within an agent-based model is that the agents learn and adapt given observation of other agents’ actions without knowledge of the payoffs that drove the other agents’ choices. This is in contrast to other crime modeling research that has used reinforcement learning where the accumulated rewards gained from prior experiences are used to guide agent learning. This is an important distinction given the dynamics of RAT. It is the presence of the various agent types that provide opportunity for crime to occur, and not the potential for reward. Additionally, the belief learning approach presented fits the observed empirical data of case studies, producing statistically significant results with lower variance when compared to a reinforcement learning approach. Application of this new approach supports law enforcement in developing responses to crime problems and planning for the effects of displacement due to directed responses, thus deterring offenders and protecting the public through crime modeling with multi-agent learning.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf Naf3ea4dc2d0a4bfa882515bb67825167
42 Neaf8c638afe84961b077eb37c5c2e9f4
43 sg:journal.1136144
44 schema:name Deter and protect: crime modeling with multi-agent learning
45 schema:pagination 155-169
46 schema:productId N27e04f0e6c81478a8d5889ff15965678
47 Nd4b2b02374a44a7cba5e7b7d820214d4
48 Nd4fa3614c0704e2eb39a9ea63ddd3d41
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092348504
50 https://doi.org/10.1007/s40747-017-0062-8
51 schema:sdDatePublished 2019-04-10T16:51
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nec078edf47584e3c99572f7d97ebc897
54 schema:url https://link.springer.com/10.1007%2Fs40747-017-0062-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N27e04f0e6c81478a8d5889ff15965678 schema:name dimensions_id
59 schema:value pub.1092348504
60 rdf:type schema:PropertyValue
61 N426a4e25aca64cfc8eb9681d421440ce rdf:first sg:person.012657343516.23
62 rdf:rest N7fc8bc486a2a4b4aa24dd96761f7ca82
63 N6b1c030603a74e03b894681d1f58c63c rdf:first N8c14602e5a5b4c3bb9c9d1549be4e3e1
64 rdf:rest N426a4e25aca64cfc8eb9681d421440ce
65 N7fc8bc486a2a4b4aa24dd96761f7ca82 rdf:first sg:person.07616627360.42
66 rdf:rest rdf:nil
67 N8c14602e5a5b4c3bb9c9d1549be4e3e1 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
68 schema:familyName Caskey
69 schema:givenName Trevor R.
70 rdf:type schema:Person
71 Naf3ea4dc2d0a4bfa882515bb67825167 schema:volumeNumber 4
72 rdf:type schema:PublicationVolume
73 Nd4b2b02374a44a7cba5e7b7d820214d4 schema:name readcube_id
74 schema:value 4661d88e5d21c091e26a6fa05cc22ed1e317223e754bc7241741f2ce416840c3
75 rdf:type schema:PropertyValue
76 Nd4fa3614c0704e2eb39a9ea63ddd3d41 schema:name doi
77 schema:value 10.1007/s40747-017-0062-8
78 rdf:type schema:PropertyValue
79 Neaf8c638afe84961b077eb37c5c2e9f4 schema:issueNumber 3
80 rdf:type schema:PublicationIssue
81 Nec078edf47584e3c99572f7d97ebc897 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
84 schema:name Studies in Human Society
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1602 schema:inDefinedTermSet anzsrc-for:
87 schema:name Criminology
88 rdf:type schema:DefinedTerm
89 sg:journal.1136144 schema:issn 2198-6053
90 2199-4536
91 schema:name Complex & Intelligent Systems
92 rdf:type schema:Periodical
93 sg:person.012657343516.23 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
94 schema:familyName Wasek
95 schema:givenName James S.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657343516.23
97 rdf:type schema:Person
98 sg:person.07616627360.42 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
99 schema:familyName Franz
100 schema:givenName Anna Y.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616627360.42
102 rdf:type schema:Person
103 sg:pub.10.1007/978-3-319-12601-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037686184
104 https://doi.org/10.1007/978-3-319-12601-2_1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-642-15223-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002782830
107 https://doi.org/10.1007/978-3-642-15223-8_8
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10940-006-9021-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029068903
110 https://doi.org/10.1007/s10940-006-9021-z
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11292-008-9058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022627651
113 https://doi.org/10.1007/s11292-008-9058-0
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11292-014-9208-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053653327
116 https://doi.org/10.1007/s11292-014-9208-5
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s40747-016-0012-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048331115
119 https://doi.org/10.1007/s40747-016-0012-x
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s40747-016-0014-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009047471
122 https://doi.org/10.1007/s40747-016-0014-8
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s40747-016-0015-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014151766
125 https://doi.org/10.1007/s40747-016-0015-7
126 rdf:type schema:CreativeWork
127 sg:pub.10.1057/9780230280786_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001685584
128 https://doi.org/10.1057/9780230280786_20
129 rdf:type schema:CreativeWork
130 sg:pub.10.1057/jos.2010.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004833801
131 https://doi.org/10.1057/jos.2010.3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/s40163-014-0014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048475955
134 https://doi.org/10.1186/s40163-014-0014-1
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1006/game.1995.1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043275461
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.compenvurbsys.2012.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026366789
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1017/s0956792515000571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053976310
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1068/b37120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058157413
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.082080899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006208454
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/07418829500096301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007202216
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1086/449106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058733762
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/allerton.2012.6483443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093660278
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/j.1540-5893.2007.00294.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033886488
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/j.1745-9125.2012.00290.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052160663
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1137/120895408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869995
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1142/s0218202508003029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963050
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1142/s0218202510004647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963212
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1177/0037549710384124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063682110
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1177/1043986214525076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063923600
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1177/1043986214525083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063923606
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1609/aimag.v33i4.2401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103067103
169 rdf:type schema:CreativeWork
170 https://doi.org/10.18564/jasss.1498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068662723
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2307/2094589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069756540
173 rdf:type schema:CreativeWork
174 https://doi.org/10.4018/978-1-59904-591-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096031656
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.253615.6 schema:alternateName George Washington University
177 schema:name The George Washington University, 20052, Washington, DC, USA
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...