Ontology type: schema:ScholarlyArticle Open Access: True
2018-06
AUTHORSNazrul Hoque, Mihir Singh, Dhruba K. Bhattacharyya
ABSTRACTFeature selection methods have been used in various applications of machine learning, bioinformatics, pattern recognition and network traffic analysis. In high dimensional datasets, due to redundant features and curse of dimensionality, a learning method takes significant amount of time and performance of the model decreases. To overcome these problems, we use feature selection technique to select a subset of relevant and non-redundant features. But, most feature selection methods are unstable in nature, i.e., for different training datasets, a feature selection method selects different subsets of features that yields different classification accuracy. In this paper, we provide an ensemble feature selection method using feature–class and feature-feature mutual information to select an optimal subset of features by combining multiple subsets of features. The method is validated using four classifiers viz., decision trees, random forests, KNN and SVM on fourteen UCI, five gene expression and two network datasets. More... »
PAGES105-118
http://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x
DOIhttp://dx.doi.org/10.1007/s40747-017-0060-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092152109
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Kaziranga University",
"id": "https://www.grid.ac/institutes/grid.448720.d",
"name": [
"Department of CSE, Kaziranga University, Jorhat, Assam, India"
],
"type": "Organization"
},
"familyName": "Hoque",
"givenName": "Nazrul",
"id": "sg:person.01355240052.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tezpur University",
"id": "https://www.grid.ac/institutes/grid.45982.32",
"name": [
"Department of CSE, Tezpur University, Tezpur, Assam, India"
],
"type": "Organization"
},
"familyName": "Singh",
"givenName": "Mihir",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tezpur University",
"id": "https://www.grid.ac/institutes/grid.45982.32",
"name": [
"Department of CSE, Tezpur University, Tezpur, Assam, India"
],
"type": "Organization"
},
"familyName": "Bhattacharyya",
"givenName": "Dhruba K.",
"id": "sg:person.013101457343.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.neucom.2012.09.049",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000104053"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patrec.2012.11.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000586524"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2010.12.156",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001950519"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00058655",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002929950",
"https://doi.org/10.1007/bf00058655"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2014.04.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014491021"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-8655(02)00196-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015554249"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-8655(02)00196-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015554249"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2011.08.040",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019957149"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cie.2013.10.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020051880"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0004-3702(97)00063-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020136638"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fiae.2016.09.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021078320"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1183614.1183736",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025206627"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cie.2006.07.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027310766"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1656274.1656278",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028526411"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.69.066138",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032496880"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.69.066138",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032496880"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2204-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038233295",
"https://doi.org/10.1007/s00521-016-2204-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2204-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038233295",
"https://doi.org/10.1007/s00521-016-2204-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0360-8352(96)00051-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039166642"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-27308-7_44",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040769956",
"https://doi.org/10.1007/978-3-642-27308-7_44"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/sec.1460",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041649343"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patcog.2011.06.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042295576"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-8655(94)90127-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052101887"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-8655(94)90127-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052101887"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcbb.2015.2476796",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061541513"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5923/j.ajis.20120205.07",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073507977"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40747-017-0037-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084040689",
"https://doi.org/10.1007/s40747-017-0037-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40747-017-0037-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084040689",
"https://doi.org/10.1007/s40747-017-0037-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icmla.2010.27",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093583251"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iri.2007.4296696",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094607407"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-06",
"datePublishedReg": "2018-06-01",
"description": "Feature selection methods have been used in various applications of machine learning, bioinformatics, pattern recognition and network traffic analysis. In high dimensional datasets, due to redundant features and curse of dimensionality, a learning method takes significant amount of time and performance of the model decreases. To overcome these problems, we use feature selection technique to select a subset of relevant and non-redundant features. But, most feature selection methods are unstable in nature, i.e., for different training datasets, a feature selection method selects different subsets of features that yields different classification accuracy. In this paper, we provide an ensemble feature selection method using feature\u2013class and feature-feature mutual information to select an optimal subset of features by combining multiple subsets of features. The method is validated using four classifiers viz., decision trees, random forests, KNN and SVM on fourteen UCI, five gene expression and two network datasets.",
"genre": "research_article",
"id": "sg:pub.10.1007/s40747-017-0060-x",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136144",
"issn": [
"2199-4536",
"2198-6053"
],
"name": "Complex & Intelligent Systems",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "4"
}
],
"name": "EFS-MI: an ensemble feature selection method for classification",
"pagination": "105-118",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b0f463e5f63dae2595041b7194643d5b06217a3e245456ee2f7fb201446095c3"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40747-017-0060-x"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092152109"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40747-017-0060-x",
"https://app.dimensions.ai/details/publication/pub.1092152109"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T17:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000557.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs40747-017-0060-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'
This table displays all metadata directly associated to this object as RDF triples.
156 TRIPLES
21 PREDICATES
52 URIs
19 LITERALS
7 BLANK NODES