EFS-MI: an ensemble feature selection method for classification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Nazrul Hoque, Mihir Singh, Dhruba K. Bhattacharyya

ABSTRACT

Feature selection methods have been used in various applications of machine learning, bioinformatics, pattern recognition and network traffic analysis. In high dimensional datasets, due to redundant features and curse of dimensionality, a learning method takes significant amount of time and performance of the model decreases. To overcome these problems, we use feature selection technique to select a subset of relevant and non-redundant features. But, most feature selection methods are unstable in nature, i.e., for different training datasets, a feature selection method selects different subsets of features that yields different classification accuracy. In this paper, we provide an ensemble feature selection method using feature–class and feature-feature mutual information to select an optimal subset of features by combining multiple subsets of features. The method is validated using four classifiers viz., decision trees, random forests, KNN and SVM on fourteen UCI, five gene expression and two network datasets. More... »

PAGES

105-118

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x

DOI

http://dx.doi.org/10.1007/s40747-017-0060-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092152109


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kaziranga University", 
          "id": "https://www.grid.ac/institutes/grid.448720.d", 
          "name": [
            "Department of CSE, Kaziranga University, Jorhat, Assam, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoque", 
        "givenName": "Nazrul", 
        "id": "sg:person.01355240052.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Department of CSE, Tezpur University, Tezpur, Assam, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Mihir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Department of CSE, Tezpur University, Tezpur, Assam, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Dhruba K.", 
        "id": "sg:person.013101457343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.09.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000104053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2012.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000586524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.12.156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001950519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014491021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(02)00196-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015554249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(02)00196-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015554249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019957149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2013.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020051880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00063-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020136638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fiae.2016.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021078320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1183614.1183736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025206627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2006.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027310766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028526411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032496880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032496880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2204-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038233295", 
          "https://doi.org/10.1007/s00521-016-2204-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2204-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038233295", 
          "https://doi.org/10.1007/s00521-016-2204-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-8352(96)00051-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039166642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-27308-7_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040769956", 
          "https://doi.org/10.1007/978-3-642-27308-7_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sec.1460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041649343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2011.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042295576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(94)90127-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052101887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(94)90127-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052101887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2015.2476796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5923/j.ajis.20120205.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073507977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0037-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040689", 
          "https://doi.org/10.1007/s40747-017-0037-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0037-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040689", 
          "https://doi.org/10.1007/s40747-017-0037-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmla.2010.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093583251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iri.2007.4296696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094607407"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Feature selection methods have been used in various applications of machine learning, bioinformatics, pattern recognition and network traffic analysis. In high dimensional datasets, due to redundant features and curse of dimensionality, a learning method takes significant amount of time and performance of the model decreases. To overcome these problems, we use feature selection technique to select a subset of relevant and non-redundant features. But, most feature selection methods are unstable in nature, i.e., for different training datasets, a feature selection method selects different subsets of features that yields different classification accuracy. In this paper, we provide an ensemble feature selection method using feature\u2013class and feature-feature mutual information to select an optimal subset of features by combining multiple subsets of features. The method is validated using four classifiers viz., decision trees, random forests, KNN and SVM on fourteen UCI, five gene expression and two network datasets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40747-017-0060-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136144", 
        "issn": [
          "2199-4536", 
          "2198-6053"
        ], 
        "name": "Complex & Intelligent Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "EFS-MI: an ensemble feature selection method for classification", 
    "pagination": "105-118", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b0f463e5f63dae2595041b7194643d5b06217a3e245456ee2f7fb201446095c3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40747-017-0060-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092152109"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40747-017-0060-x", 
      "https://app.dimensions.ai/details/publication/pub.1092152109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000557.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40747-017-0060-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40747-017-0060-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb3a344150a804b2c975145791f528c7e
4 schema:citation sg:pub.10.1007/978-3-642-27308-7_44
5 sg:pub.10.1007/bf00058655
6 sg:pub.10.1007/s00521-016-2204-0
7 sg:pub.10.1007/s40747-017-0037-9
8 https://doi.org/10.1002/sec.1460
9 https://doi.org/10.1016/0167-8655(94)90127-9
10 https://doi.org/10.1016/0360-8352(96)00051-4
11 https://doi.org/10.1016/j.cie.2006.07.004
12 https://doi.org/10.1016/j.cie.2013.10.009
13 https://doi.org/10.1016/j.eswa.2010.12.156
14 https://doi.org/10.1016/j.eswa.2014.04.019
15 https://doi.org/10.1016/j.fiae.2016.09.004
16 https://doi.org/10.1016/j.neucom.2011.08.040
17 https://doi.org/10.1016/j.neucom.2012.09.049
18 https://doi.org/10.1016/j.patcog.2011.06.006
19 https://doi.org/10.1016/j.patrec.2012.11.012
20 https://doi.org/10.1016/s0004-3702(97)00063-5
21 https://doi.org/10.1016/s0167-8655(02)00196-4
22 https://doi.org/10.1103/physreve.69.066138
23 https://doi.org/10.1109/icmla.2010.27
24 https://doi.org/10.1109/iri.2007.4296696
25 https://doi.org/10.1109/tcbb.2015.2476796
26 https://doi.org/10.1145/1183614.1183736
27 https://doi.org/10.1145/1656274.1656278
28 https://doi.org/10.5923/j.ajis.20120205.07
29 schema:datePublished 2018-06
30 schema:datePublishedReg 2018-06-01
31 schema:description Feature selection methods have been used in various applications of machine learning, bioinformatics, pattern recognition and network traffic analysis. In high dimensional datasets, due to redundant features and curse of dimensionality, a learning method takes significant amount of time and performance of the model decreases. To overcome these problems, we use feature selection technique to select a subset of relevant and non-redundant features. But, most feature selection methods are unstable in nature, i.e., for different training datasets, a feature selection method selects different subsets of features that yields different classification accuracy. In this paper, we provide an ensemble feature selection method using feature–class and feature-feature mutual information to select an optimal subset of features by combining multiple subsets of features. The method is validated using four classifiers viz., decision trees, random forests, KNN and SVM on fourteen UCI, five gene expression and two network datasets.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N9795f5eefcda4e54b60d2320d7a84472
36 Neb3ba16184614c23a03a9a21fb9d29fb
37 sg:journal.1136144
38 schema:name EFS-MI: an ensemble feature selection method for classification
39 schema:pagination 105-118
40 schema:productId N628d1a8257ff4b3d823232e6cfee7edb
41 N7dc39bb2064746059a4247123b447ce2
42 Ndec704f1236a410a8e9d68a23fec14d1
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152109
44 https://doi.org/10.1007/s40747-017-0060-x
45 schema:sdDatePublished 2019-04-10T17:39
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N042cb7d6f73d47a59f9ed223445be9b5
48 schema:url https://link.springer.com/10.1007%2Fs40747-017-0060-x
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N042cb7d6f73d47a59f9ed223445be9b5 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N2daca24f693c4fff98764907d0334ea4 rdf:first Nac72e64ffe314b1488feb2e77e27f1c5
55 rdf:rest Nab75236a04164518a42e17b5499cfab9
56 N628d1a8257ff4b3d823232e6cfee7edb schema:name dimensions_id
57 schema:value pub.1092152109
58 rdf:type schema:PropertyValue
59 N7dc39bb2064746059a4247123b447ce2 schema:name readcube_id
60 schema:value b0f463e5f63dae2595041b7194643d5b06217a3e245456ee2f7fb201446095c3
61 rdf:type schema:PropertyValue
62 N9795f5eefcda4e54b60d2320d7a84472 schema:volumeNumber 4
63 rdf:type schema:PublicationVolume
64 Nab75236a04164518a42e17b5499cfab9 rdf:first sg:person.013101457343.35
65 rdf:rest rdf:nil
66 Nac72e64ffe314b1488feb2e77e27f1c5 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
67 schema:familyName Singh
68 schema:givenName Mihir
69 rdf:type schema:Person
70 Nb3a344150a804b2c975145791f528c7e rdf:first sg:person.01355240052.68
71 rdf:rest N2daca24f693c4fff98764907d0334ea4
72 Ndec704f1236a410a8e9d68a23fec14d1 schema:name doi
73 schema:value 10.1007/s40747-017-0060-x
74 rdf:type schema:PropertyValue
75 Neb3ba16184614c23a03a9a21fb9d29fb schema:issueNumber 2
76 rdf:type schema:PublicationIssue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1136144 schema:issn 2198-6053
84 2199-4536
85 schema:name Complex & Intelligent Systems
86 rdf:type schema:Periodical
87 sg:person.013101457343.35 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
88 schema:familyName Bhattacharyya
89 schema:givenName Dhruba K.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35
91 rdf:type schema:Person
92 sg:person.01355240052.68 schema:affiliation https://www.grid.ac/institutes/grid.448720.d
93 schema:familyName Hoque
94 schema:givenName Nazrul
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-642-27308-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040769956
98 https://doi.org/10.1007/978-3-642-27308-7_44
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
101 https://doi.org/10.1007/bf00058655
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00521-016-2204-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038233295
104 https://doi.org/10.1007/s00521-016-2204-0
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s40747-017-0037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084040689
107 https://doi.org/10.1007/s40747-017-0037-9
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/sec.1460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041649343
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0167-8655(94)90127-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052101887
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0360-8352(96)00051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039166642
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.cie.2006.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027310766
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.cie.2013.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020051880
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.eswa.2010.12.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001950519
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.eswa.2014.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014491021
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.fiae.2016.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021078320
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.neucom.2011.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019957149
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.neucom.2012.09.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000104053
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.patcog.2011.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042295576
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.patrec.2012.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000586524
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0004-3702(97)00063-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020136638
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0167-8655(02)00196-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015554249
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreve.69.066138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032496880
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/icmla.2010.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093583251
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/iri.2007.4296696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094607407
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tcbb.2015.2476796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541513
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/1183614.1183736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025206627
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
148 rdf:type schema:CreativeWork
149 https://doi.org/10.5923/j.ajis.20120205.07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073507977
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.448720.d schema:alternateName Kaziranga University
152 schema:name Department of CSE, Kaziranga University, Jorhat, Assam, India
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.45982.32 schema:alternateName Tezpur University
155 schema:name Department of CSE, Tezpur University, Tezpur, Assam, India
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...