EFS-MI: an ensemble feature selection method for classification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Nazrul Hoque, Mihir Singh, Dhruba K. Bhattacharyya

ABSTRACT

Feature selection methods have been used in various applications of machine learning, bioinformatics, pattern recognition and network traffic analysis. In high dimensional datasets, due to redundant features and curse of dimensionality, a learning method takes significant amount of time and performance of the model decreases. To overcome these problems, we use feature selection technique to select a subset of relevant and non-redundant features. But, most feature selection methods are unstable in nature, i.e., for different training datasets, a feature selection method selects different subsets of features that yields different classification accuracy. In this paper, we provide an ensemble feature selection method using feature–class and feature-feature mutual information to select an optimal subset of features by combining multiple subsets of features. The method is validated using four classifiers viz., decision trees, random forests, KNN and SVM on fourteen UCI, five gene expression and two network datasets. More... »

PAGES

105-118

References to SciGraph publications

  • 2012. Decomposition+: Improving ℓ-Diversity for Multiple Sensitive Attributes in ADVANCES IN COMPUTER SCIENCE AND INFORMATION TECHNOLOGY. COMPUTER SCIENCE AND ENGINEERING
  • 2017-09. Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion in NEURAL COMPUTING AND APPLICATIONS
  • 2017-06. An insight into imbalanced Big Data classification: outcomes and challenges in COMPLEX & INTELLIGENT SYSTEMS
  • 1996-08. Bagging predictors in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x

    DOI

    http://dx.doi.org/10.1007/s40747-017-0060-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092152109


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kaziranga University", 
              "id": "https://www.grid.ac/institutes/grid.448720.d", 
              "name": [
                "Department of CSE, Kaziranga University, Jorhat, Assam, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoque", 
            "givenName": "Nazrul", 
            "id": "sg:person.01355240052.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tezpur University", 
              "id": "https://www.grid.ac/institutes/grid.45982.32", 
              "name": [
                "Department of CSE, Tezpur University, Tezpur, Assam, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Mihir", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tezpur University", 
              "id": "https://www.grid.ac/institutes/grid.45982.32", 
              "name": [
                "Department of CSE, Tezpur University, Tezpur, Assam, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bhattacharyya", 
            "givenName": "Dhruba K.", 
            "id": "sg:person.013101457343.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.neucom.2012.09.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000104053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2012.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000586524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.12.156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001950519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2014.04.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014491021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(02)00196-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015554249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(02)00196-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015554249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2011.08.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019957149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2013.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020051880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0004-3702(97)00063-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020136638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fiae.2016.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021078320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1183614.1183736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025206627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2006.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027310766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1656274.1656278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028526411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.066138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032496880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.066138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032496880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2204-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038233295", 
              "https://doi.org/10.1007/s00521-016-2204-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2204-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038233295", 
              "https://doi.org/10.1007/s00521-016-2204-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0360-8352(96)00051-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039166642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-27308-7_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040769956", 
              "https://doi.org/10.1007/978-3-642-27308-7_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sec.1460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041649343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2011.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042295576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8655(94)90127-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052101887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8655(94)90127-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052101887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2015.2476796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061541513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5923/j.ajis.20120205.07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073507977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40747-017-0037-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084040689", 
              "https://doi.org/10.1007/s40747-017-0037-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40747-017-0037-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084040689", 
              "https://doi.org/10.1007/s40747-017-0037-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icmla.2010.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093583251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iri.2007.4296696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094607407"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06", 
        "datePublishedReg": "2018-06-01", 
        "description": "Feature selection methods have been used in various applications of machine learning, bioinformatics, pattern recognition and network traffic analysis. In high dimensional datasets, due to redundant features and curse of dimensionality, a learning method takes significant amount of time and performance of the model decreases. To overcome these problems, we use feature selection technique to select a subset of relevant and non-redundant features. But, most feature selection methods are unstable in nature, i.e., for different training datasets, a feature selection method selects different subsets of features that yields different classification accuracy. In this paper, we provide an ensemble feature selection method using feature\u2013class and feature-feature mutual information to select an optimal subset of features by combining multiple subsets of features. The method is validated using four classifiers viz., decision trees, random forests, KNN and SVM on fourteen UCI, five gene expression and two network datasets.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40747-017-0060-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136144", 
            "issn": [
              "2199-4536", 
              "2198-6053"
            ], 
            "name": "Complex & Intelligent Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "EFS-MI: an ensemble feature selection method for classification", 
        "pagination": "105-118", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b0f463e5f63dae2595041b7194643d5b06217a3e245456ee2f7fb201446095c3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40747-017-0060-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092152109"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40747-017-0060-x", 
          "https://app.dimensions.ai/details/publication/pub.1092152109"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000557.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40747-017-0060-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0060-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40747-017-0060-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ndc20c929e0524103ac10044bdea8fc15
    4 schema:citation sg:pub.10.1007/978-3-642-27308-7_44
    5 sg:pub.10.1007/bf00058655
    6 sg:pub.10.1007/s00521-016-2204-0
    7 sg:pub.10.1007/s40747-017-0037-9
    8 https://doi.org/10.1002/sec.1460
    9 https://doi.org/10.1016/0167-8655(94)90127-9
    10 https://doi.org/10.1016/0360-8352(96)00051-4
    11 https://doi.org/10.1016/j.cie.2006.07.004
    12 https://doi.org/10.1016/j.cie.2013.10.009
    13 https://doi.org/10.1016/j.eswa.2010.12.156
    14 https://doi.org/10.1016/j.eswa.2014.04.019
    15 https://doi.org/10.1016/j.fiae.2016.09.004
    16 https://doi.org/10.1016/j.neucom.2011.08.040
    17 https://doi.org/10.1016/j.neucom.2012.09.049
    18 https://doi.org/10.1016/j.patcog.2011.06.006
    19 https://doi.org/10.1016/j.patrec.2012.11.012
    20 https://doi.org/10.1016/s0004-3702(97)00063-5
    21 https://doi.org/10.1016/s0167-8655(02)00196-4
    22 https://doi.org/10.1103/physreve.69.066138
    23 https://doi.org/10.1109/icmla.2010.27
    24 https://doi.org/10.1109/iri.2007.4296696
    25 https://doi.org/10.1109/tcbb.2015.2476796
    26 https://doi.org/10.1145/1183614.1183736
    27 https://doi.org/10.1145/1656274.1656278
    28 https://doi.org/10.5923/j.ajis.20120205.07
    29 schema:datePublished 2018-06
    30 schema:datePublishedReg 2018-06-01
    31 schema:description Feature selection methods have been used in various applications of machine learning, bioinformatics, pattern recognition and network traffic analysis. In high dimensional datasets, due to redundant features and curse of dimensionality, a learning method takes significant amount of time and performance of the model decreases. To overcome these problems, we use feature selection technique to select a subset of relevant and non-redundant features. But, most feature selection methods are unstable in nature, i.e., for different training datasets, a feature selection method selects different subsets of features that yields different classification accuracy. In this paper, we provide an ensemble feature selection method using feature–class and feature-feature mutual information to select an optimal subset of features by combining multiple subsets of features. The method is validated using four classifiers viz., decision trees, random forests, KNN and SVM on fourteen UCI, five gene expression and two network datasets.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N184a655c728849ec9f631e54a360f6dd
    36 N563d5c3564ee4a6d844d76dac32ab9fa
    37 sg:journal.1136144
    38 schema:name EFS-MI: an ensemble feature selection method for classification
    39 schema:pagination 105-118
    40 schema:productId N001b42c51dc04f919ecd50a50d2e3718
    41 N503c51c110614184bdfa806f5cd14d8d
    42 N982f9cd11c45442aa62c41f0bb9d9118
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152109
    44 https://doi.org/10.1007/s40747-017-0060-x
    45 schema:sdDatePublished 2019-04-10T17:39
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N14e59c36920144a1aa5b4f2ae310ca61
    48 schema:url https://link.springer.com/10.1007%2Fs40747-017-0060-x
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N001b42c51dc04f919ecd50a50d2e3718 schema:name readcube_id
    53 schema:value b0f463e5f63dae2595041b7194643d5b06217a3e245456ee2f7fb201446095c3
    54 rdf:type schema:PropertyValue
    55 N14e59c36920144a1aa5b4f2ae310ca61 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N184a655c728849ec9f631e54a360f6dd schema:issueNumber 2
    58 rdf:type schema:PublicationIssue
    59 N32f4cc20ae1b4ee49a05c8b654f3dfa9 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
    60 schema:familyName Singh
    61 schema:givenName Mihir
    62 rdf:type schema:Person
    63 N503c51c110614184bdfa806f5cd14d8d schema:name dimensions_id
    64 schema:value pub.1092152109
    65 rdf:type schema:PropertyValue
    66 N563d5c3564ee4a6d844d76dac32ab9fa schema:volumeNumber 4
    67 rdf:type schema:PublicationVolume
    68 N982f9cd11c45442aa62c41f0bb9d9118 schema:name doi
    69 schema:value 10.1007/s40747-017-0060-x
    70 rdf:type schema:PropertyValue
    71 Na2705368bb7a43da81d85e553e402b06 rdf:first sg:person.013101457343.35
    72 rdf:rest rdf:nil
    73 Ndc20c929e0524103ac10044bdea8fc15 rdf:first sg:person.01355240052.68
    74 rdf:rest Nf242518097b4449d8e056896b259f110
    75 Nf242518097b4449d8e056896b259f110 rdf:first N32f4cc20ae1b4ee49a05c8b654f3dfa9
    76 rdf:rest Na2705368bb7a43da81d85e553e402b06
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Artificial Intelligence and Image Processing
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136144 schema:issn 2198-6053
    84 2199-4536
    85 schema:name Complex & Intelligent Systems
    86 rdf:type schema:Periodical
    87 sg:person.013101457343.35 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
    88 schema:familyName Bhattacharyya
    89 schema:givenName Dhruba K.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35
    91 rdf:type schema:Person
    92 sg:person.01355240052.68 schema:affiliation https://www.grid.ac/institutes/grid.448720.d
    93 schema:familyName Hoque
    94 schema:givenName Nazrul
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-3-642-27308-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040769956
    98 https://doi.org/10.1007/978-3-642-27308-7_44
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    101 https://doi.org/10.1007/bf00058655
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s00521-016-2204-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038233295
    104 https://doi.org/10.1007/s00521-016-2204-0
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s40747-017-0037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084040689
    107 https://doi.org/10.1007/s40747-017-0037-9
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/sec.1460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041649343
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/0167-8655(94)90127-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052101887
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0360-8352(96)00051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039166642
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.cie.2006.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027310766
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.cie.2013.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020051880
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.eswa.2010.12.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001950519
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.eswa.2014.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014491021
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.fiae.2016.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021078320
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.neucom.2011.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019957149
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.neucom.2012.09.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000104053
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.patcog.2011.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042295576
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.patrec.2012.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000586524
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/s0004-3702(97)00063-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020136638
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/s0167-8655(02)00196-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015554249
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physreve.69.066138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032496880
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/icmla.2010.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093583251
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/iri.2007.4296696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094607407
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tcbb.2015.2476796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541513
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1145/1183614.1183736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025206627
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.5923/j.ajis.20120205.07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073507977
    150 rdf:type schema:CreativeWork
    151 https://www.grid.ac/institutes/grid.448720.d schema:alternateName Kaziranga University
    152 schema:name Department of CSE, Kaziranga University, Jorhat, Assam, India
    153 rdf:type schema:Organization
    154 https://www.grid.ac/institutes/grid.45982.32 schema:alternateName Tezpur University
    155 schema:name Department of CSE, Tezpur University, Tezpur, Assam, India
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...