Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Dusan Marcek

ABSTRACT

First, this paper investigates the effect of good and bad news on volatility in the BUX return time series using asymmetric ARCH models. Then, the accuracy of forecasting models based on statistical (stochastic), machine learning methods, and soft/granular RBF network is investigated. To forecast the high-frequency financial data, we apply statistical ARMA and asymmetric GARCH-class models. A novel RBF network architecture is proposed based on incorporation of an error-correction mechanism, which improves forecasting ability of feed-forward neural networks. These proposed modelling approaches and SVM models are applied to predict the high-frequency time series of the BUX stock index. We found that it is possible to enhance forecast accuracy and achieve significant risk reduction in managerial decision making by applying intelligent forecasting models based on latest information technologies. On the other hand, we showed that statistical GARCH-class models can identify the presence of leverage effects, and react to the good and bad news. More... »

PAGES

95-104

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40747-017-0056-6

DOI

http://dx.doi.org/10.1007/s40747-017-0056-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091903105


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Ostrava", 
          "id": "https://www.grid.ac/institutes/grid.440850.d", 
          "name": [
            "Department of Applied Informatics, V\u0160B-Technical University of Ostrava, Sokolsk\u00e1 33, 701 21, Ostrava, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marcek", 
        "givenName": "Dusan", 
        "id": "sg:person.01212440445.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212440445.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1000583391", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21763-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000583391", 
          "https://doi.org/10.1007/978-0-387-21763-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21763-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000583391", 
          "https://doi.org/10.1007/978-0-387-21763-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(86)90063-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009802361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-5398(93)90006-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025353847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2006.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025380230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72530-5_60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028476193", 
          "https://doi.org/10.1007/978-3-540-72530-5_60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72530-5_60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028476193", 
          "https://doi.org/10.1007/978-3-540-72530-5_60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470724163.ch45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031641401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032559706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-2070(94)90045-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042056300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.963762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2938260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070139902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781584889991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095907102"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "First, this paper investigates the effect of good and bad news on volatility in the BUX return time series using asymmetric ARCH models. Then, the accuracy of forecasting models based on statistical (stochastic), machine learning methods, and soft/granular RBF network is investigated. To forecast the high-frequency financial data, we apply statistical ARMA and asymmetric GARCH-class models. A novel RBF network architecture is proposed based on incorporation of an error-correction mechanism, which improves forecasting ability of feed-forward neural networks. These proposed modelling approaches and SVM models are applied to predict the high-frequency time series of the BUX stock index. We found that it is possible to enhance forecast accuracy and achieve significant risk reduction in managerial decision making by applying intelligent forecasting models based on latest information technologies. On the other hand, we showed that statistical GARCH-class models can identify the presence of leverage effects, and react to the good and bad news.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40747-017-0056-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136144", 
        "issn": [
          "2199-4536", 
          "2198-6053"
        ], 
        "name": "Complex & Intelligent Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics", 
    "pagination": "95-104", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13c11a87b6fa59ce7f005907dc20b74094fbf518923bd3b2fb028fbbe8afd283"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40747-017-0056-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091903105"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40747-017-0056-6", 
      "https://app.dimensions.ai/details/publication/pub.1091903105"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs40747-017-0056-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0056-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0056-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0056-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0056-6'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40747-017-0056-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd1410e828e5f47aba55ffde2d1eb785e
4 schema:citation sg:pub.10.1007/978-0-387-21763-5
5 sg:pub.10.1007/978-3-540-72530-5_60
6 https://app.dimensions.ai/details/publication/pub.1000583391
7 https://doi.org/10.1002/9780470724163.ch45
8 https://doi.org/10.1006/jmbi.2001.4580
9 https://doi.org/10.1016/0169-2070(94)90045-0
10 https://doi.org/10.1016/0304-4076(86)90063-1
11 https://doi.org/10.1016/0927-5398(93)90006-d
12 https://doi.org/10.1016/j.ijforecast.2006.01.001
13 https://doi.org/10.1109/91.963762
14 https://doi.org/10.1201/9781584889991
15 https://doi.org/10.2307/1912773
16 https://doi.org/10.2307/2938260
17 schema:datePublished 2018-06
18 schema:datePublishedReg 2018-06-01
19 schema:description First, this paper investigates the effect of good and bad news on volatility in the BUX return time series using asymmetric ARCH models. Then, the accuracy of forecasting models based on statistical (stochastic), machine learning methods, and soft/granular RBF network is investigated. To forecast the high-frequency financial data, we apply statistical ARMA and asymmetric GARCH-class models. A novel RBF network architecture is proposed based on incorporation of an error-correction mechanism, which improves forecasting ability of feed-forward neural networks. These proposed modelling approaches and SVM models are applied to predict the high-frequency time series of the BUX stock index. We found that it is possible to enhance forecast accuracy and achieve significant risk reduction in managerial decision making by applying intelligent forecasting models based on latest information technologies. On the other hand, we showed that statistical GARCH-class models can identify the presence of leverage effects, and react to the good and bad news.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N155dbf96771f4ed5ba0d0d56cf4f98c0
24 Nf52f93c2dbc04f5d99eb15b5f1bac9f4
25 sg:journal.1136144
26 schema:name Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics
27 schema:pagination 95-104
28 schema:productId N33675a3691e2461da5cbd03c70160c81
29 N3c35d1e2f6994aa2b426ad20931f56c0
30 N845ab186788e4e27ab902eadd0099226
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091903105
32 https://doi.org/10.1007/s40747-017-0056-6
33 schema:sdDatePublished 2019-04-10T16:04
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Na844a4dfaabe471cad5362718d27ee79
36 schema:url http://link.springer.com/10.1007%2Fs40747-017-0056-6
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N155dbf96771f4ed5ba0d0d56cf4f98c0 schema:issueNumber 2
41 rdf:type schema:PublicationIssue
42 N33675a3691e2461da5cbd03c70160c81 schema:name doi
43 schema:value 10.1007/s40747-017-0056-6
44 rdf:type schema:PropertyValue
45 N3c35d1e2f6994aa2b426ad20931f56c0 schema:name dimensions_id
46 schema:value pub.1091903105
47 rdf:type schema:PropertyValue
48 N845ab186788e4e27ab902eadd0099226 schema:name readcube_id
49 schema:value 13c11a87b6fa59ce7f005907dc20b74094fbf518923bd3b2fb028fbbe8afd283
50 rdf:type schema:PropertyValue
51 Na844a4dfaabe471cad5362718d27ee79 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nd1410e828e5f47aba55ffde2d1eb785e rdf:first sg:person.01212440445.83
54 rdf:rest rdf:nil
55 Nf52f93c2dbc04f5d99eb15b5f1bac9f4 schema:volumeNumber 4
56 rdf:type schema:PublicationVolume
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
61 schema:name Statistics
62 rdf:type schema:DefinedTerm
63 sg:journal.1136144 schema:issn 2198-6053
64 2199-4536
65 schema:name Complex & Intelligent Systems
66 rdf:type schema:Periodical
67 sg:person.01212440445.83 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
68 schema:familyName Marcek
69 schema:givenName Dusan
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212440445.83
71 rdf:type schema:Person
72 sg:pub.10.1007/978-0-387-21763-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000583391
73 https://doi.org/10.1007/978-0-387-21763-5
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/978-3-540-72530-5_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028476193
76 https://doi.org/10.1007/978-3-540-72530-5_60
77 rdf:type schema:CreativeWork
78 https://app.dimensions.ai/details/publication/pub.1000583391 schema:CreativeWork
79 https://doi.org/10.1002/9780470724163.ch45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031641401
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1006/jmbi.2001.4580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032559706
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0169-2070(94)90045-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042056300
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0304-4076(86)90063-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009802361
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0927-5398(93)90006-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1025353847
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.ijforecast.2006.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025380230
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/91.963762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248115
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1201/9781584889991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095907102
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2307/1912773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640314
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2307/2938260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070139902
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.440850.d schema:alternateName Technical University of Ostrava
100 schema:name Department of Applied Informatics, VŠB-Technical University of Ostrava, Sokolská 33, 701 21, Ostrava, Czech Republic
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...