An intelligent noninvasive model for coronary artery disease detection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03

AUTHORS

Luxmi Verma, Sangeet Srivastava, P. C. Negi

ABSTRACT

Coronary artery disease (CAD) is one of the leading causes of death globally. Angiography is one of the benchmarked diagnoses for detection of CAD; however, it is costly, invasive, and requires a high level of technical expertise. This paper discusses a data mining technique that uses noninvasive clinical data to identify CAD cases. The clinical data of 335 subjects were collected at the cardiology department, Indira Gandhi Medical College, Shimla, India, over the period of 2012–2013. Only 48.9% subjects showed coronary stenosis in coronary angiography and were confirmed cases of CAD. A large number of cases (171 out of 335) were found normal after invasive diagnosis. Hence, a requirement of noninvasive technique was felt that could identify CAD cases without going for invasive diagnosis. We applied data mining classification techniques on noninvasive clinical data. The data set is analyzed using a hybrid and novel k-means cluster centroid-based method for missing value imputation and C4.5, NB Tree and multilayer perceptron for modeling to predict CAD patients. The proposed hybrid method increases the accuracy achieved by the basic techniques of classification. This framework is a promising tool for screening CAD and its severity with high probability and low cost. More... »

PAGES

11-18

References to SciGraph publications

  • 2013. Machine Learning-Based Missing Value Imputation Method for Clinical Datasets in IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES
  • 2010. Missing Value Imputation Based on K-Mean Clustering with Weighted Distance in CONTEMPORARY COMPUTING
  • 2014-05. Epidemiological studies of CHD and the evolution of preventive cardiology in NATURE REVIEWS CARDIOLOGY
  • 2004. The Treatment of Missing Values and its Effect on Classifier Accuracy in CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40747-017-0048-6

    DOI

    http://dx.doi.org/10.1007/s40747-017-0048-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090682685


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "ITM University", 
              "id": "https://www.grid.ac/institutes/grid.449310.b", 
              "name": [
                "Department of Computer Science and Engineering, The NorthCap University, Gurugram, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verma", 
            "givenName": "Luxmi", 
            "id": "sg:person.0627526273.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627526273.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ITM University", 
              "id": "https://www.grid.ac/institutes/grid.449310.b", 
              "name": [
                "Department of Applied Sciences, The NorthCap University, Gurugram, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srivastava", 
            "givenName": "Sangeet", 
            "id": "sg:person.012563346165.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012563346165.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indira Gandhi Medical College", 
              "id": "https://www.grid.ac/institutes/grid.414489.4", 
              "name": [
                "Department of Cardiology, Indira Gandhi Medical College, Shimla, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Negi", 
            "givenName": "P. C.", 
            "id": "sg:person.01003027142.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003027142.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/eurheartj/eht296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003024186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclinepi.2012.11.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003287164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2011.01.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010281037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14834-7_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011412091", 
              "https://doi.org/10.1007/978-3-642-14834-7_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14834-7_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011412091", 
              "https://doi.org/10.1007/978-3-642-14834-7_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9343(77)90874-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012385336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrcardio.2014.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015087821", 
              "https://doi.org/10.1038/nrcardio.2014.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0118504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015801768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(99)04021-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017503828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.radonc.2007.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018890922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ije/30.suppl_1.s35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020557697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artmed.2004.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025296320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gheart.2012.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025708316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(04)17019-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027437503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-6190-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036603795", 
              "https://doi.org/10.1007/978-94-007-6190-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2007.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037951425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-17103-1_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039339284", 
              "https://doi.org/10.1007/978-3-642-17103-1_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-17103-1_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039339284", 
              "https://doi.org/10.1007/978-3-642-17103-1_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0933-3657(03)00034-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041023845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0933-3657(03)00034-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041023845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2013.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042252981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2013.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042671343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2007.04.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044970844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1503/cmaj.050925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045237760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1503/cmaj.050925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045237760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2012.08.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045678292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.00062-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045980007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0735-1097(83)80072-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046296912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/heart.89.3.255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047479408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2011/496925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049120614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2015.02.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049373040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(04)17018-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052249325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2007.907985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061656602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2009.2038906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061656858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2012.2215044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061657201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17485/ijst/2016/v9i15/87328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068339563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2105/ajph.47.4_pt_2.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068860410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.aje.a112186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075058757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079108531", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icmla.2014.84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094034761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icicict.2014.6781356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094202597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccse.2010.5593711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094202807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bmei.2009.5301650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094207188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/aiccsa.2008.4493524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094436027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccit.2007.204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095174316"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-03", 
        "datePublishedReg": "2018-03-01", 
        "description": "Coronary artery disease (CAD) is one of the leading causes of death globally. Angiography is one of the benchmarked diagnoses for detection of CAD; however, it is costly, invasive, and requires a high level of technical expertise. This paper discusses a data mining technique that uses noninvasive clinical data to identify CAD cases. The clinical data of 335 subjects were collected at the cardiology department, Indira Gandhi Medical College, Shimla, India, over the period of 2012\u20132013. Only 48.9% subjects showed coronary stenosis in coronary angiography and were confirmed cases of CAD. A large number of cases (171 out of 335) were found normal after invasive diagnosis. Hence, a requirement of noninvasive technique was felt that could identify CAD cases without going for invasive diagnosis. We applied data mining classification techniques on noninvasive clinical data. The data set is analyzed using a hybrid and novel k-means cluster centroid-based method for missing value imputation and C4.5, NB Tree and multilayer perceptron for modeling to predict CAD patients. The proposed hybrid method increases the accuracy achieved by the basic techniques of classification. This framework is a promising tool for screening CAD and its severity with high probability and low cost.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40747-017-0048-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136144", 
            "issn": [
              "2199-4536", 
              "2198-6053"
            ], 
            "name": "Complex & Intelligent Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "An intelligent noninvasive model for coronary artery disease detection", 
        "pagination": "11-18", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dca5edd6a6ed111afe9251c77458d8f823842e39515d36e6e212c0cad8d99362"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40747-017-0048-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090682685"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40747-017-0048-6", 
          "https://app.dimensions.ai/details/publication/pub.1090682685"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113679_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40747-017-0048-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0048-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0048-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0048-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0048-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    205 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40747-017-0048-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N10ba1c767b2740b3bb54600656f33589
    4 schema:citation sg:pub.10.1007/978-3-642-14834-7_56
    5 sg:pub.10.1007/978-3-642-17103-1_60
    6 sg:pub.10.1007/978-94-007-6190-2_19
    7 sg:pub.10.1038/nrcardio.2014.26
    8 https://app.dimensions.ai/details/publication/pub.1079108531
    9 https://doi.org/10.1016/0002-9343(77)90874-9
    10 https://doi.org/10.1016/j.artmed.2004.07.002
    11 https://doi.org/10.1016/j.cmpb.2013.03.004
    12 https://doi.org/10.1016/j.cmpb.2013.07.012
    13 https://doi.org/10.1016/j.eswa.2007.04.015
    14 https://doi.org/10.1016/j.eswa.2007.06.004
    15 https://doi.org/10.1016/j.eswa.2011.01.114
    16 https://doi.org/10.1016/j.eswa.2012.08.028
    17 https://doi.org/10.1016/j.eswa.2015.02.050
    18 https://doi.org/10.1016/j.gheart.2012.12.001
    19 https://doi.org/10.1016/j.jclinepi.2012.11.008
    20 https://doi.org/10.1016/j.radonc.2007.10.019
    21 https://doi.org/10.1016/s0140-6736(04)17018-9
    22 https://doi.org/10.1016/s0140-6736(04)17019-0
    23 https://doi.org/10.1016/s0140-6736(99)04021-0
    24 https://doi.org/10.1016/s0735-1097(83)80072-2
    25 https://doi.org/10.1016/s0933-3657(03)00034-4
    26 https://doi.org/10.1093/eurheartj/eht296
    27 https://doi.org/10.1093/ije/30.suppl_1.s35
    28 https://doi.org/10.1093/oxfordjournals.aje.a112186
    29 https://doi.org/10.1109/aiccsa.2008.4493524
    30 https://doi.org/10.1109/bmei.2009.5301650
    31 https://doi.org/10.1109/iccit.2007.204
    32 https://doi.org/10.1109/iccse.2010.5593711
    33 https://doi.org/10.1109/icicict.2014.6781356
    34 https://doi.org/10.1109/icmla.2014.84
    35 https://doi.org/10.1109/titb.2007.907985
    36 https://doi.org/10.1109/titb.2009.2038906
    37 https://doi.org/10.1109/titb.2012.2215044
    38 https://doi.org/10.1128/aem.00062-07
    39 https://doi.org/10.1136/heart.89.3.255
    40 https://doi.org/10.1155/2011/496925
    41 https://doi.org/10.1371/journal.pone.0118504
    42 https://doi.org/10.1503/cmaj.050925
    43 https://doi.org/10.17485/ijst/2016/v9i15/87328
    44 https://doi.org/10.2105/ajph.47.4_pt_2.4
    45 schema:datePublished 2018-03
    46 schema:datePublishedReg 2018-03-01
    47 schema:description Coronary artery disease (CAD) is one of the leading causes of death globally. Angiography is one of the benchmarked diagnoses for detection of CAD; however, it is costly, invasive, and requires a high level of technical expertise. This paper discusses a data mining technique that uses noninvasive clinical data to identify CAD cases. The clinical data of 335 subjects were collected at the cardiology department, Indira Gandhi Medical College, Shimla, India, over the period of 2012–2013. Only 48.9% subjects showed coronary stenosis in coronary angiography and were confirmed cases of CAD. A large number of cases (171 out of 335) were found normal after invasive diagnosis. Hence, a requirement of noninvasive technique was felt that could identify CAD cases without going for invasive diagnosis. We applied data mining classification techniques on noninvasive clinical data. The data set is analyzed using a hybrid and novel k-means cluster centroid-based method for missing value imputation and C4.5, NB Tree and multilayer perceptron for modeling to predict CAD patients. The proposed hybrid method increases the accuracy achieved by the basic techniques of classification. This framework is a promising tool for screening CAD and its severity with high probability and low cost.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree true
    51 schema:isPartOf N21e6ba48deb440e083b7a61815860b7a
    52 N5f28ddd825544fea83bccfe0f4f27eec
    53 sg:journal.1136144
    54 schema:name An intelligent noninvasive model for coronary artery disease detection
    55 schema:pagination 11-18
    56 schema:productId N6737eebc76004baeb984fb2eb17834fe
    57 N92aac900cedf4a6ba3cbb8c8b52ed5fe
    58 Ne57a52afb6614ad082f1c54bfa7ac97c
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090682685
    60 https://doi.org/10.1007/s40747-017-0048-6
    61 schema:sdDatePublished 2019-04-11T10:39
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N4d1713d386f24d40802848e2cae54415
    64 schema:url https://link.springer.com/10.1007%2Fs40747-017-0048-6
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N10ba1c767b2740b3bb54600656f33589 rdf:first sg:person.0627526273.48
    69 rdf:rest N5950f23befb4440892bdfdb00ed97873
    70 N21e6ba48deb440e083b7a61815860b7a schema:volumeNumber 4
    71 rdf:type schema:PublicationVolume
    72 N4d1713d386f24d40802848e2cae54415 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N5950f23befb4440892bdfdb00ed97873 rdf:first sg:person.012563346165.20
    75 rdf:rest Na6f827f84bcd4f94bb860419c423bc96
    76 N5f28ddd825544fea83bccfe0f4f27eec schema:issueNumber 1
    77 rdf:type schema:PublicationIssue
    78 N6737eebc76004baeb984fb2eb17834fe schema:name doi
    79 schema:value 10.1007/s40747-017-0048-6
    80 rdf:type schema:PropertyValue
    81 N92aac900cedf4a6ba3cbb8c8b52ed5fe schema:name readcube_id
    82 schema:value dca5edd6a6ed111afe9251c77458d8f823842e39515d36e6e212c0cad8d99362
    83 rdf:type schema:PropertyValue
    84 Na6f827f84bcd4f94bb860419c423bc96 rdf:first sg:person.01003027142.72
    85 rdf:rest rdf:nil
    86 Ne57a52afb6614ad082f1c54bfa7ac97c schema:name dimensions_id
    87 schema:value pub.1090682685
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information and Computing Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Artificial Intelligence and Image Processing
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1136144 schema:issn 2198-6053
    96 2199-4536
    97 schema:name Complex & Intelligent Systems
    98 rdf:type schema:Periodical
    99 sg:person.01003027142.72 schema:affiliation https://www.grid.ac/institutes/grid.414489.4
    100 schema:familyName Negi
    101 schema:givenName P. C.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003027142.72
    103 rdf:type schema:Person
    104 sg:person.012563346165.20 schema:affiliation https://www.grid.ac/institutes/grid.449310.b
    105 schema:familyName Srivastava
    106 schema:givenName Sangeet
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012563346165.20
    108 rdf:type schema:Person
    109 sg:person.0627526273.48 schema:affiliation https://www.grid.ac/institutes/grid.449310.b
    110 schema:familyName Verma
    111 schema:givenName Luxmi
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627526273.48
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-3-642-14834-7_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011412091
    115 https://doi.org/10.1007/978-3-642-14834-7_56
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-642-17103-1_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039339284
    118 https://doi.org/10.1007/978-3-642-17103-1_60
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-94-007-6190-2_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036603795
    121 https://doi.org/10.1007/978-94-007-6190-2_19
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/nrcardio.2014.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015087821
    124 https://doi.org/10.1038/nrcardio.2014.26
    125 rdf:type schema:CreativeWork
    126 https://app.dimensions.ai/details/publication/pub.1079108531 schema:CreativeWork
    127 https://doi.org/10.1016/0002-9343(77)90874-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012385336
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.artmed.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025296320
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.cmpb.2013.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042252981
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.cmpb.2013.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042671343
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.eswa.2007.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044970844
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.eswa.2007.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037951425
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.eswa.2011.01.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010281037
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.eswa.2012.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045678292
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.eswa.2015.02.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049373040
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.gheart.2012.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025708316
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.jclinepi.2012.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003287164
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.radonc.2007.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018890922
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/s0140-6736(04)17018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052249325
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/s0140-6736(04)17019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027437503
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s0140-6736(99)04021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017503828
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/s0735-1097(83)80072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046296912
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/s0933-3657(03)00034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041023845
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1093/eurheartj/eht296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003024186
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1093/ije/30.suppl_1.s35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020557697
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1093/oxfordjournals.aje.a112186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075058757
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/aiccsa.2008.4493524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094436027
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/bmei.2009.5301650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094207188
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/iccit.2007.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095174316
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/iccse.2010.5593711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094202807
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/icicict.2014.6781356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094202597
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/icmla.2014.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094034761
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/titb.2007.907985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656602
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/titb.2009.2038906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656858
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/titb.2012.2215044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657201
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1128/aem.00062-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045980007
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1136/heart.89.3.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047479408
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1155/2011/496925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049120614
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1371/journal.pone.0118504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015801768
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1503/cmaj.050925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045237760
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.17485/ijst/2016/v9i15/87328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068339563
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.2105/ajph.47.4_pt_2.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068860410
    198 rdf:type schema:CreativeWork
    199 https://www.grid.ac/institutes/grid.414489.4 schema:alternateName Indira Gandhi Medical College
    200 schema:name Department of Cardiology, Indira Gandhi Medical College, Shimla, India
    201 rdf:type schema:Organization
    202 https://www.grid.ac/institutes/grid.449310.b schema:alternateName ITM University
    203 schema:name Department of Applied Sciences, The NorthCap University, Gurugram, India
    204 Department of Computer Science and Engineering, The NorthCap University, Gurugram, India
    205 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...