An insight into imbalanced Big Data classification: outcomes and challenges View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

Alberto Fernández, Sara del Río, Nitesh V. Chawla, Francisco Herrera

ABSTRACT

Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. However, traditional learning approaches cannot be directly applied due to scalability issues. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basically, it carries out a “divide-and-conquer” distributed procedure in a fault-tolerant way to adapt for commodity hardware. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts, are accentuated during the data partitioning to fit the MapReduce programming style. This paper is designed under three main pillars. First, to present the first outcomes for imbalanced classification in Big Data problems, introducing the current research state of this area. Second, to analyze the behavior of standard pre-processing techniques in this particular framework. Finally, taking into account the experimental results obtained throughout this work, we will carry out a discussion on the challenges and future directions for the topic. More... »

PAGES

105-120

References to SciGraph publications

  • 2008-10. Automatically countering imbalance and its empirical relationship to cost in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2012-04. DBSMOTE: Density-Based Synthetic Minority Over-sampling TEchnique in APPLIED INTELLIGENCE
  • 2010-02. Ensemble-based classifiers in ARTIFICIAL INTELLIGENCE REVIEW
  • 2008-09. On the k-NN performance in a challenging scenario of imbalance and overlapping in PATTERN ANALYSIS AND APPLICATIONS
  • 2016. Dealing with Data Difficulty Factors While Learning from Imbalanced Data in CHALLENGES IN COMPUTATIONAL STATISTICS AND DATA MINING
  • 2016-07. Highway traffic accident prediction using VDS big data analysis in THE JOURNAL OF SUPERCOMPUTING
  • 2016-12. A call for biological data mining approaches in epidemiology in BIODATA MINING
  • 2010. Learning from Imbalanced Data in Presence of Noisy and Borderline Examples in ROUGH SETS AND CURRENT TRENDS IN COMPUTING
  • 2017-06. The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2016-11. Learning from imbalanced data: open challenges and future directions in PROGRESS IN ARTIFICIAL INTELLIGENCE
  • 2015-10. Probabilistic combination of classification rules and its application to medical diagnosis in MACHINE LEARNING
  • 2010-12. Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms in BMC BIOINFORMATICS
  • 2016-06. An empirical study of a hybrid imbalanced-class DT-RST classification procedure to elucidate therapeutic effects in uremia patients in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2009-10-15. The Impact of Small Disjuncts on Classifier Learning in DATA MINING
  • 2013-12. SMOTE for high-dimensional class-imbalanced data in BMC BIOINFORMATICS
  • 2015-10. Class imbalance revisited: a new experimental setup to assess the performance of treatment methods in KNOWLEDGE AND INFORMATION SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40747-017-0037-9

    DOI

    http://dx.doi.org/10.1007/s40747-017-0037-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084040689


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computer Software", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Granada", 
              "id": "https://www.grid.ac/institutes/grid.4489.1", 
              "name": [
                "Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fern\u00e1ndez", 
            "givenName": "Alberto", 
            "id": "sg:person.015646534100.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646534100.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Granada", 
              "id": "https://www.grid.ac/institutes/grid.4489.1", 
              "name": [
                "Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "del R\u00edo", 
            "givenName": "Sara", 
            "id": "sg:person.07526361303.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526361303.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Notre Dame", 
              "id": "https://www.grid.ac/institutes/grid.131063.6", 
              "name": [
                "Department of Computer Science and Engineering, 384 Fitzpatrick Hall, University of Notre Dame, 46556, Notre Dame, IN, USA", 
                "Interdisciplinary Center for Network Science and Applications, 384 Nieuwland Hall of Science, University of Notre Dame, 46556, Notre Dame, IN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chawla", 
            "givenName": "Nitesh V.", 
            "id": "sg:person.011637216031.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011637216031.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Granada", 
              "id": "https://www.grid.ac/institutes/grid.4489.1", 
              "name": [
                "Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herrera", 
            "givenName": "Francisco", 
            "id": "sg:person.011360734641.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360734641.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-14-106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002308843", 
              "https://doi.org/10.1186/1471-2105-14-106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002308843", 
              "https://doi.org/10.1186/1471-2105-14-106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13529-3_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002472091", 
              "https://doi.org/10.1007/978-3-642-13529-3_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13529-3_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002472091", 
              "https://doi.org/10.1007/978-3-642-13529-3_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2014.03.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003662327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13748-016-0094-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005418935", 
              "https://doi.org/10.1007/s13748-016-0094-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13748-016-0094-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005418935", 
              "https://doi.org/10.1007/s13748-016-0094-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-008-0087-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006547852", 
              "https://doi.org/10.1007/s10618-008-0087-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-016-1482-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006579609", 
              "https://doi.org/10.1007/s11517-016-1482-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/416591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007010048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2014.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008517415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-015-0478-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011763823", 
              "https://doi.org/10.1007/s13042-015-0478-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2012.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016115150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2011.12.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016293499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-009-9124-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017758686", 
              "https://doi.org/10.1007/s10462-009-9124-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-009-9124-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017758686", 
              "https://doi.org/10.1007/s10462-009-9124-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-009-9124-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017758686", 
              "https://doi.org/10.1007/s10462-009-9124-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fss.2014.01.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017793107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13040-015-0079-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019666268", 
              "https://doi.org/10.1186/s13040-015-0079-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.05.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020837146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/312129.312220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021956833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1007730.1007737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022023208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-015-5508-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027653112", 
              "https://doi.org/10.1007/s10994-015-5508-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-015-5508-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027653112", 
              "https://doi.org/10.1007/s10994-015-5508-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2013.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031091687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpdc.2014.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031831029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2014.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032405341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-1280-0_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033767878", 
              "https://doi.org/10.1007/978-1-4419-1280-0_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-1280-0_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033767878", 
              "https://doi.org/10.1007/978-1-4419-1280-0_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2013.01.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034856393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/widm.1134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035172267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-18781-5_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035671074", 
              "https://doi.org/10.1007/978-3-319-18781-5_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/18756891.2015.1017377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036127642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(02)00257-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036892377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(02)00257-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036892377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2014.08.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037739576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1007730.1007735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037852366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2016.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038338705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jocs.2015.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040320691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/694809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040954104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041484855", 
              "https://doi.org/10.1186/1471-2105-11-447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-011-0287-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042900665", 
              "https://doi.org/10.1007/s10489-011-0287-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1327452.1327492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047364446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10115-014-0794-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047561768", 
              "https://doi.org/10.1007/s10115-014-0794-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10044-007-0087-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047782281", 
              "https://doi.org/10.1007/s10044-007-0087-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10044-007-0087-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047782281", 
              "https://doi.org/10.1007/s10044-007-0087-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2015.09.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048276279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/748681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049287423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/239628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049646746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11227-016-1624-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050235163", 
              "https://doi.org/10.1007/s11227-016-1624-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2014.01.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051018762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2011.01.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052154484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tfuzz.2014.2371472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061606940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2005.50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2008.239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2009.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061662031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2012.232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061662597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2013.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061662691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2011.2161285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061798360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218001409007326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062949830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12733/jics20104484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064643496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14778/1687553.1687609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067367527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/imis.2014.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093297588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iadcc.2015.7154739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093592164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/trustcom.2015.579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094247299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2008.4633969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094491390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bigdata.2014.7004467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094773630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2016.7743853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095240311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2015.7256961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095429684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.1199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105579281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105579550"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06", 
        "datePublishedReg": "2017-06-01", 
        "description": "Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. However, traditional learning approaches cannot be directly applied due to scalability issues. To overcome this issue, the MapReduce framework has arisen as a \u201cde facto\u201d solution. Basically, it carries out a \u201cdivide-and-conquer\u201d distributed procedure in a fault-tolerant way to adapt for commodity hardware. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts, are accentuated during the data partitioning to fit the MapReduce programming style. This paper is designed under three main pillars. First, to present the first outcomes for imbalanced classification in Big Data problems, introducing the current research state of this area. Second, to analyze the behavior of standard pre-processing techniques in this particular framework. Finally, taking into account the experimental results obtained throughout this work, we will carry out a discussion on the challenges and future directions for the topic.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40747-017-0037-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3851759", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136144", 
            "issn": [
              "2199-4536", 
              "2198-6053"
            ], 
            "name": "Complex & Intelligent Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "An insight into imbalanced Big Data classification: outcomes and challenges", 
        "pagination": "105-120", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d3d5454d254a597f500a42a8b16ad5665958602ce4a89def5d2f0d41da174cc7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40747-017-0037-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084040689"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40747-017-0037-9", 
          "https://app.dimensions.ai/details/publication/pub.1084040689"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54307_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40747-017-0037-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0037-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0037-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0037-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40747-017-0037-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    290 TRIPLES      21 PREDICATES      89 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40747-017-0037-9 schema:about anzsrc-for:08
    2 anzsrc-for:0803
    3 schema:author N4457900992f84f0682ada076bc0f6a7b
    4 schema:citation sg:pub.10.1007/978-1-4419-1280-0_9
    5 sg:pub.10.1007/978-3-319-18781-5_17
    6 sg:pub.10.1007/978-3-642-13529-3_18
    7 sg:pub.10.1007/s10044-007-0087-5
    8 sg:pub.10.1007/s10115-014-0794-3
    9 sg:pub.10.1007/s10462-009-9124-7
    10 sg:pub.10.1007/s10489-011-0287-y
    11 sg:pub.10.1007/s10618-008-0087-0
    12 sg:pub.10.1007/s10994-015-5508-x
    13 sg:pub.10.1007/s11227-016-1624-z
    14 sg:pub.10.1007/s11517-016-1482-0
    15 sg:pub.10.1007/s13042-015-0478-7
    16 sg:pub.10.1007/s13748-016-0094-0
    17 sg:pub.10.1186/1471-2105-11-447
    18 sg:pub.10.1186/1471-2105-14-106
    19 sg:pub.10.1186/s13040-015-0079-8
    20 https://doi.org/10.1002/widm.1134
    21 https://doi.org/10.1016/j.cmpb.2016.04.005
    22 https://doi.org/10.1016/j.engappai.2015.09.011
    23 https://doi.org/10.1016/j.eswa.2011.12.043
    24 https://doi.org/10.1016/j.eswa.2014.08.002
    25 https://doi.org/10.1016/j.fss.2014.01.015
    26 https://doi.org/10.1016/j.ins.2013.07.007
    27 https://doi.org/10.1016/j.ins.2014.01.015
    28 https://doi.org/10.1016/j.ins.2014.03.043
    29 https://doi.org/10.1016/j.ins.2014.08.051
    30 https://doi.org/10.1016/j.jocs.2015.09.008
    31 https://doi.org/10.1016/j.jpdc.2014.01.003
    32 https://doi.org/10.1016/j.knosys.2013.01.018
    33 https://doi.org/10.1016/j.knosys.2014.09.002
    34 https://doi.org/10.1016/j.knosys.2015.05.027
    35 https://doi.org/10.1016/j.neucom.2012.06.009
    36 https://doi.org/10.1016/j.patcog.2011.01.017
    37 https://doi.org/10.1016/s0031-3203(02)00257-1
    38 https://doi.org/10.1080/18756891.2015.1017377
    39 https://doi.org/10.1109/bigdata.2014.7004467
    40 https://doi.org/10.1109/cec.2015.7256961
    41 https://doi.org/10.1109/cec.2016.7743853
    42 https://doi.org/10.1109/iadcc.2015.7154739
    43 https://doi.org/10.1109/ijcnn.2008.4633969
    44 https://doi.org/10.1109/imis.2014.6
    45 https://doi.org/10.1109/tfuzz.2014.2371472
    46 https://doi.org/10.1109/tkde.2005.50
    47 https://doi.org/10.1109/tkde.2008.239
    48 https://doi.org/10.1109/tkde.2009.187
    49 https://doi.org/10.1109/tkde.2012.232
    50 https://doi.org/10.1109/tkde.2013.109
    51 https://doi.org/10.1109/trustcom.2015.579
    52 https://doi.org/10.1109/tsmcc.2011.2161285
    53 https://doi.org/10.1142/s0218001409007326
    54 https://doi.org/10.1145/1007730.1007735
    55 https://doi.org/10.1145/1007730.1007737
    56 https://doi.org/10.1145/1327452.1327492
    57 https://doi.org/10.1145/312129.312220
    58 https://doi.org/10.1155/2013/239628
    59 https://doi.org/10.1155/2013/694809
    60 https://doi.org/10.1155/2014/416591
    61 https://doi.org/10.1155/2015/748681
    62 https://doi.org/10.12733/jics20104484
    63 https://doi.org/10.14778/1687553.1687609
    64 https://doi.org/10.1613/jair.1199
    65 https://doi.org/10.1613/jair.953
    66 schema:datePublished 2017-06
    67 schema:datePublishedReg 2017-06-01
    68 schema:description Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. However, traditional learning approaches cannot be directly applied due to scalability issues. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basically, it carries out a “divide-and-conquer” distributed procedure in a fault-tolerant way to adapt for commodity hardware. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts, are accentuated during the data partitioning to fit the MapReduce programming style. This paper is designed under three main pillars. First, to present the first outcomes for imbalanced classification in Big Data problems, introducing the current research state of this area. Second, to analyze the behavior of standard pre-processing techniques in this particular framework. Finally, taking into account the experimental results obtained throughout this work, we will carry out a discussion on the challenges and future directions for the topic.
    69 schema:genre research_article
    70 schema:inLanguage en
    71 schema:isAccessibleForFree true
    72 schema:isPartOf N53a1999cead24d14838014778d55c80c
    73 N967ca93b83cf4202af60cd1b4b420f48
    74 sg:journal.1136144
    75 schema:name An insight into imbalanced Big Data classification: outcomes and challenges
    76 schema:pagination 105-120
    77 schema:productId Ne6d7ebb74b63457fa68a7f96a363a88c
    78 Nf186a8833f1240c9be6fee5cb72a257f
    79 Nf6f15f5e3f5347fcb2a49b4fe9d38fdc
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084040689
    81 https://doi.org/10.1007/s40747-017-0037-9
    82 schema:sdDatePublished 2019-04-11T10:17
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N3189ddf6d2c2449f847003d8233b2ac9
    85 schema:url https://link.springer.com/10.1007%2Fs40747-017-0037-9
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N3189ddf6d2c2449f847003d8233b2ac9 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 N4457900992f84f0682ada076bc0f6a7b rdf:first sg:person.015646534100.05
    92 rdf:rest N67a536a5551249d6abe2adab199d2660
    93 N53a1999cead24d14838014778d55c80c schema:volumeNumber 3
    94 rdf:type schema:PublicationVolume
    95 N67a536a5551249d6abe2adab199d2660 rdf:first sg:person.07526361303.84
    96 rdf:rest N9ee7dc164dbe4b399f4648619dccc8ed
    97 N967ca93b83cf4202af60cd1b4b420f48 schema:issueNumber 2
    98 rdf:type schema:PublicationIssue
    99 N9ee7dc164dbe4b399f4648619dccc8ed rdf:first sg:person.011637216031.34
    100 rdf:rest Nb5a4d2865c87463eb938cdfcc665d4fc
    101 Nb5a4d2865c87463eb938cdfcc665d4fc rdf:first sg:person.011360734641.33
    102 rdf:rest rdf:nil
    103 Ne6d7ebb74b63457fa68a7f96a363a88c schema:name doi
    104 schema:value 10.1007/s40747-017-0037-9
    105 rdf:type schema:PropertyValue
    106 Nf186a8833f1240c9be6fee5cb72a257f schema:name dimensions_id
    107 schema:value pub.1084040689
    108 rdf:type schema:PropertyValue
    109 Nf6f15f5e3f5347fcb2a49b4fe9d38fdc schema:name readcube_id
    110 schema:value d3d5454d254a597f500a42a8b16ad5665958602ce4a89def5d2f0d41da174cc7
    111 rdf:type schema:PropertyValue
    112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Information and Computing Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Computer Software
    117 rdf:type schema:DefinedTerm
    118 sg:grant.3851759 http://pending.schema.org/fundedItem sg:pub.10.1007/s40747-017-0037-9
    119 rdf:type schema:MonetaryGrant
    120 sg:journal.1136144 schema:issn 2198-6053
    121 2199-4536
    122 schema:name Complex & Intelligent Systems
    123 rdf:type schema:Periodical
    124 sg:person.011360734641.33 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
    125 schema:familyName Herrera
    126 schema:givenName Francisco
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360734641.33
    128 rdf:type schema:Person
    129 sg:person.011637216031.34 schema:affiliation https://www.grid.ac/institutes/grid.131063.6
    130 schema:familyName Chawla
    131 schema:givenName Nitesh V.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011637216031.34
    133 rdf:type schema:Person
    134 sg:person.015646534100.05 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
    135 schema:familyName Fernández
    136 schema:givenName Alberto
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646534100.05
    138 rdf:type schema:Person
    139 sg:person.07526361303.84 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
    140 schema:familyName del Río
    141 schema:givenName Sara
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526361303.84
    143 rdf:type schema:Person
    144 sg:pub.10.1007/978-1-4419-1280-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033767878
    145 https://doi.org/10.1007/978-1-4419-1280-0_9
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-319-18781-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035671074
    148 https://doi.org/10.1007/978-3-319-18781-5_17
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-642-13529-3_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002472091
    151 https://doi.org/10.1007/978-3-642-13529-3_18
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s10044-007-0087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047782281
    154 https://doi.org/10.1007/s10044-007-0087-5
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s10115-014-0794-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047561768
    157 https://doi.org/10.1007/s10115-014-0794-3
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s10462-009-9124-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017758686
    160 https://doi.org/10.1007/s10462-009-9124-7
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s10489-011-0287-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042900665
    163 https://doi.org/10.1007/s10489-011-0287-y
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s10618-008-0087-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006547852
    166 https://doi.org/10.1007/s10618-008-0087-0
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s10994-015-5508-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027653112
    169 https://doi.org/10.1007/s10994-015-5508-x
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11227-016-1624-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050235163
    172 https://doi.org/10.1007/s11227-016-1624-z
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s11517-016-1482-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006579609
    175 https://doi.org/10.1007/s11517-016-1482-0
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s13042-015-0478-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011763823
    178 https://doi.org/10.1007/s13042-015-0478-7
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s13748-016-0094-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005418935
    181 https://doi.org/10.1007/s13748-016-0094-0
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1186/1471-2105-11-447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041484855
    184 https://doi.org/10.1186/1471-2105-11-447
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1186/1471-2105-14-106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002308843
    187 https://doi.org/10.1186/1471-2105-14-106
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1186/s13040-015-0079-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019666268
    190 https://doi.org/10.1186/s13040-015-0079-8
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1002/widm.1134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035172267
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.cmpb.2016.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038338705
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.engappai.2015.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048276279
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.eswa.2011.12.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016293499
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.eswa.2014.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008517415
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.fss.2014.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017793107
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.ins.2013.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031091687
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.ins.2014.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051018762
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.ins.2014.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003662327
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.ins.2014.08.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037739576
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.jocs.2015.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040320691
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.jpdc.2014.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031831029
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.knosys.2013.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034856393
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.knosys.2014.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032405341
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.knosys.2015.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020837146
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.neucom.2012.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016115150
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.patcog.2011.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052154484
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/s0031-3203(02)00257-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036892377
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1080/18756891.2015.1017377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036127642
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1109/bigdata.2014.7004467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094773630
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1109/cec.2015.7256961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095429684
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1109/cec.2016.7743853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095240311
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1109/iadcc.2015.7154739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093592164
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1109/ijcnn.2008.4633969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094491390
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1109/imis.2014.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093297588
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1109/tfuzz.2014.2371472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606940
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1109/tkde.2005.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661459
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1109/tkde.2008.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661916
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1109/tkde.2009.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662031
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1109/tkde.2012.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662597
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1109/tkde.2013.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662691
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1109/trustcom.2015.579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094247299
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1109/tsmcc.2011.2161285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798360
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1142/s0218001409007326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062949830
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1145/1007730.1007735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852366
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1145/1007730.1007737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022023208
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1145/1327452.1327492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047364446
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1145/312129.312220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021956833
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1155/2013/239628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049646746
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1155/2013/694809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040954104
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1155/2014/416591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007010048
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1155/2015/748681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049287423
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.12733/jics20104484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064643496
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.14778/1687553.1687609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367527
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1613/jair.1199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579281
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1613/jair.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579550
    283 rdf:type schema:CreativeWork
    284 https://www.grid.ac/institutes/grid.131063.6 schema:alternateName University of Notre Dame
    285 schema:name Department of Computer Science and Engineering, 384 Fitzpatrick Hall, University of Notre Dame, 46556, Notre Dame, IN, USA
    286 Interdisciplinary Center for Network Science and Applications, 384 Nieuwland Hall of Science, University of Notre Dame, 46556, Notre Dame, IN, USA
    287 rdf:type schema:Organization
    288 https://www.grid.ac/institutes/grid.4489.1 schema:alternateName University of Granada
    289 schema:name Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
    290 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...