From Clinic to Computer and Back Again: Practical Considerations When Designing and Implementing Machine Learning Solutions for Pediatrics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-09-15

AUTHORS

Sujay Nagaraj, Vinyas Harish, Liam G. McCoy, Felipe Morgado, Ian Stedman, Stephen Lu, Erik Drysdale, Michael Brudno, Devin Singh

ABSTRACT

Machine learning (ML), a branch of artificial intelligence, is influencing all fields in medicine, with an abundance of work describing its application to adult practice. ML in pediatrics is distinctly unique with clinical, technical, and ethical nuances limiting the direct translation of ML tools developed for adults to pediatric populations. To our knowledge, no work has yet focused on outlining the unique considerations that need to be taken into account when designing and implementing ML in pediatrics. The nature of varying developmental stages and the prominence of family-centered care lead to vastly different data-generating processes in pediatrics. Data heterogeneity and a lack of high-quality pediatric databases further complicate ML research. In order to address some of these nuances, we provide a common pipeline for clinicians and computer scientists to use as a foundation for structuring ML projects, and a framework for the translation of a developed model into clinical practice in pediatrics. Throughout these pathways, we also highlight ethical and legal considerations that must be taken into account when working with pediatric populations and data. Here, we describe a comprehensive outline of special considerations required of ML in pediatrics from project ideation to implementation. We hope this review can serve as a high-level guideline for ML scientists and clinicians alike to identify applications in the pediatric setting, generate effective ML solutions, and subsequently deliver them to patients, families, and providers. More... »

PAGES

1-14

References to SciGraph publications

  • 2006-08-09. Barriers and facilitators to implementing shared decision-making in clinical practice: a systematic review of health professionals' perceptions in IMPLEMENTATION SCIENCE
  • 2013-11-29. “Many miles to go …”: a systematic review of the implementation of patient decision support interventions into routine clinical practice in BMC MEDICAL INFORMATICS AND DECISION MAKING
  • 2019-04-04. A qualitative review of the design thinking framework in health professions education in BMC MEDICAL EDUCATION
  • 2019-10-29. Key challenges for delivering clinical impact with artificial intelligence in BMC MEDICINE
  • 2020-01-13. Treating health disparities with artificial intelligence in NATURE MEDICINE
  • 2020-01-13. PIC, a paediatric-specific intensive care database in SCIENTIFIC DATA
  • 2020-10-14. Addendum: International evaluation of an AI system for breast cancer screening in NATURE
  • 2019-08-19. Do no harm: a roadmap for responsible machine learning for health care in NATURE MEDICINE
  • 2019-09-19. Author Correction: Do no harm: a roadmap for responsible machine learning for health care in NATURE MEDICINE
  • 2018-10-22. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care in NATURE MEDICINE
  • 2019-01-07. High-performance medicine: the convergence of human and artificial intelligence in NATURE MEDICINE
  • 2013-10-13. Healthcare technologies, quality improvement programs and hospital organizational culture in Canadian hospitals in BMC HEALTH SERVICES RESEARCH
  • 2019-02-11. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence in NATURE MEDICINE
  • 2020-01-01. International evaluation of an AI system for breast cancer screening in NATURE
  • 2017-01-30. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts in NATURE BIOMEDICAL ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40746-020-00205-4

    DOI

    http://dx.doi.org/10.1007/s40746-020-00205-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130829767


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Toronto, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Faculty of Medicine, University of Toronto, Toronto, Ontario Canada", 
                "Department of Computer Science, University of Toronto, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagaraj", 
            "givenName": "Sujay", 
            "id": "sg:person.07374730541.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374730541.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Faculty of Medicine, University of Toronto, Toronto, Ontario Canada", 
                "Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harish", 
            "givenName": "Vinyas", 
            "id": "sg:person.013043662721.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013043662721.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Faculty of Medicine, University of Toronto, Toronto, Ontario Canada", 
                "Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McCoy", 
            "givenName": "Liam G.", 
            "id": "sg:person.07354341565.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354341565.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Faculty of Medicine, University of Toronto, Toronto, Ontario Canada", 
                "Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morgado", 
            "givenName": "Felipe", 
            "id": "sg:person.010642051233.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010642051233.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Public Policy and Administration, York University, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.21100.32", 
              "name": [
                "School of Public Policy and Administration, York University, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stedman", 
            "givenName": "Ian", 
            "id": "sg:person.010024270726.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010024270726.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.42327.30", 
              "name": [
                "Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Stephen", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.42327.30", 
              "name": [
                "Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Drysdale", 
            "givenName": "Erik", 
            "id": "sg:person.015142771033.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142771033.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vector Institute for Artificial Intelligence, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.494618.6", 
              "name": [
                "Department of Computer Science, University of Toronto, Toronto, Ontario Canada", 
                "Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada", 
                "University Health Network, Toronto, Ontario Canada", 
                "Vector Institute for Artificial Intelligence, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brudno", 
            "givenName": "Michael", 
            "id": "sg:person.01253563237.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada", 
              "id": "http://www.grid.ac/institutes/grid.42327.30", 
              "name": [
                "Department of Computer Science, University of Toronto, Toronto, Ontario Canada", 
                "Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Devin", 
            "id": "sg:person.014161012554.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014161012554.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1748-5908-1-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031736962", 
              "https://doi.org/10.1186/1748-5908-1-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-019-0548-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120396052", 
              "https://doi.org/10.1038/s41591-019-0548-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41551-016-0024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074248475", 
              "https://doi.org/10.1038/s41551-016-0024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41597-020-0355-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124048470", 
              "https://doi.org/10.1038/s41597-020-0355-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-019-0649-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124048252", 
              "https://doi.org/10.1038/s41591-019-0649-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12916-019-1426-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122171842", 
              "https://doi.org/10.1186/s12916-019-1426-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0300-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110955659", 
              "https://doi.org/10.1038/s41591-018-0300-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1799-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123770599", 
              "https://doi.org/10.1038/s41586-019-1799-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-019-0609-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121124373", 
              "https://doi.org/10.1038/s41591-019-0609-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6963-13-413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018565503", 
              "https://doi.org/10.1186/1472-6963-13-413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0335-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112058854", 
              "https://doi.org/10.1038/s41591-018-0335-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2679-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131659323", 
              "https://doi.org/10.1038/s41586-020-2679-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12909-019-1528-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113184539", 
              "https://doi.org/10.1186/s12909-019-1528-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6947-13-s2-s14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036898636", 
              "https://doi.org/10.1186/1472-6947-13-s2-s14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0213-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107542124", 
              "https://doi.org/10.1038/s41591-018-0213-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-09-15", 
        "datePublishedReg": "2020-09-15", 
        "description": "Machine learning (ML), a branch of artificial intelligence, is influencing all fields in medicine, with an abundance of work describing its application to adult practice. ML in pediatrics is distinctly unique with clinical, technical, and ethical nuances limiting the direct translation of ML tools developed for adults to pediatric populations. To our knowledge, no work has yet focused on outlining the unique considerations that need to be taken into account when designing and implementing ML in pediatrics. The nature of varying developmental stages and the prominence of family-centered care lead to vastly different data-generating processes in pediatrics. Data heterogeneity and a lack of high-quality pediatric databases further complicate ML research. In order to address some of these nuances, we provide a common pipeline for clinicians and computer scientists to use as a foundation for structuring ML projects, and a framework for the translation of a developed model into clinical practice in pediatrics. Throughout these pathways, we also highlight ethical and legal considerations that must be taken into account when working with pediatric populations and data. Here, we describe a comprehensive outline of special considerations required of ML in pediatrics from project ideation to implementation. We hope this review can serve as a high-level guideline for ML scientists and clinicians alike to identify applications in the pediatric setting, generate effective ML solutions, and subsequently deliver them to patients, families, and providers.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40746-020-00205-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1051358", 
            "issn": [
              "2198-6088"
            ], 
            "name": "Current Treatment Options in Pediatrics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "machine learning", 
          "Machine Learning Solutions", 
          "high-level guidelines", 
          "artificial intelligence", 
          "ML tools", 
          "ML projects", 
          "learning solutions", 
          "ML research", 
          "computer scientists", 
          "data heterogeneity", 
          "common pipeline", 
          "abundance of work", 
          "ML solution", 
          "direct translation", 
          "intelligence", 
          "data-generating process", 
          "computer", 
          "applications", 
          "learning", 
          "implementation", 
          "pipeline", 
          "framework", 
          "database", 
          "work", 
          "solution", 
          "providers", 
          "designing", 
          "tool", 
          "practical considerations", 
          "scientists", 
          "project", 
          "translation", 
          "knowledge", 
          "consideration", 
          "comprehensive outline", 
          "ethical nuances", 
          "order", 
          "foundation", 
          "model", 
          "legal considerations", 
          "data", 
          "research", 
          "account", 
          "outline", 
          "process", 
          "field", 
          "practice", 
          "nuances", 
          "special consideration", 
          "branches", 
          "setting", 
          "lack", 
          "unique considerations", 
          "nature", 
          "stage", 
          "guidelines", 
          "heterogeneity", 
          "prominence", 
          "clinicians", 
          "pediatric database", 
          "medicine", 
          "back", 
          "clinical practice", 
          "review", 
          "lead", 
          "care leads", 
          "ideation", 
          "family", 
          "population", 
          "clinic", 
          "abundance", 
          "pediatrics", 
          "pediatric population", 
          "pediatric setting", 
          "developmental stages", 
          "patients", 
          "adult practice", 
          "adults", 
          "pathway", 
          "different data-generating processes", 
          "family-centered care lead", 
          "high-quality pediatric databases", 
          "complicate ML research", 
          "project ideation", 
          "ML scientists", 
          "effective ML solutions", 
          "Implementing Machine Learning Solutions"
        ], 
        "name": "From Clinic to Computer and Back Again: Practical Considerations When Designing and Implementing Machine Learning Solutions for Pediatrics", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130829767"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40746-020-00205-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40746-020-00205-4", 
          "https://app.dimensions.ai/details/publication/pub.1130829767"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_872.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40746-020-00205-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40746-020-00205-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40746-020-00205-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40746-020-00205-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40746-020-00205-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      22 PREDICATES      127 URIs      104 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40746-020-00205-4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N1dfc7e6decf84e559c8ec50bcdfdd793
    4 schema:citation sg:pub.10.1038/s41551-016-0024
    5 sg:pub.10.1038/s41586-019-1799-6
    6 sg:pub.10.1038/s41586-020-2679-9
    7 sg:pub.10.1038/s41591-018-0213-5
    8 sg:pub.10.1038/s41591-018-0300-7
    9 sg:pub.10.1038/s41591-018-0335-9
    10 sg:pub.10.1038/s41591-019-0548-6
    11 sg:pub.10.1038/s41591-019-0609-x
    12 sg:pub.10.1038/s41591-019-0649-2
    13 sg:pub.10.1038/s41597-020-0355-4
    14 sg:pub.10.1186/1472-6947-13-s2-s14
    15 sg:pub.10.1186/1472-6963-13-413
    16 sg:pub.10.1186/1748-5908-1-16
    17 sg:pub.10.1186/s12909-019-1528-8
    18 sg:pub.10.1186/s12916-019-1426-2
    19 schema:datePublished 2020-09-15
    20 schema:datePublishedReg 2020-09-15
    21 schema:description Machine learning (ML), a branch of artificial intelligence, is influencing all fields in medicine, with an abundance of work describing its application to adult practice. ML in pediatrics is distinctly unique with clinical, technical, and ethical nuances limiting the direct translation of ML tools developed for adults to pediatric populations. To our knowledge, no work has yet focused on outlining the unique considerations that need to be taken into account when designing and implementing ML in pediatrics. The nature of varying developmental stages and the prominence of family-centered care lead to vastly different data-generating processes in pediatrics. Data heterogeneity and a lack of high-quality pediatric databases further complicate ML research. In order to address some of these nuances, we provide a common pipeline for clinicians and computer scientists to use as a foundation for structuring ML projects, and a framework for the translation of a developed model into clinical practice in pediatrics. Throughout these pathways, we also highlight ethical and legal considerations that must be taken into account when working with pediatric populations and data. Here, we describe a comprehensive outline of special considerations required of ML in pediatrics from project ideation to implementation. We hope this review can serve as a high-level guideline for ML scientists and clinicians alike to identify applications in the pediatric setting, generate effective ML solutions, and subsequently deliver them to patients, families, and providers.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf Na4b4df4c124a4675bf485055aff5df61
    26 Ncb9ef4a57edd45e5b9abc8491eb268e5
    27 sg:journal.1051358
    28 schema:keywords Implementing Machine Learning Solutions
    29 ML projects
    30 ML research
    31 ML scientists
    32 ML solution
    33 ML tools
    34 Machine Learning Solutions
    35 abundance
    36 abundance of work
    37 account
    38 adult practice
    39 adults
    40 applications
    41 artificial intelligence
    42 back
    43 branches
    44 care leads
    45 clinic
    46 clinical practice
    47 clinicians
    48 common pipeline
    49 complicate ML research
    50 comprehensive outline
    51 computer
    52 computer scientists
    53 consideration
    54 data
    55 data heterogeneity
    56 data-generating process
    57 database
    58 designing
    59 developmental stages
    60 different data-generating processes
    61 direct translation
    62 effective ML solutions
    63 ethical nuances
    64 family
    65 family-centered care lead
    66 field
    67 foundation
    68 framework
    69 guidelines
    70 heterogeneity
    71 high-level guidelines
    72 high-quality pediatric databases
    73 ideation
    74 implementation
    75 intelligence
    76 knowledge
    77 lack
    78 lead
    79 learning
    80 learning solutions
    81 legal considerations
    82 machine learning
    83 medicine
    84 model
    85 nature
    86 nuances
    87 order
    88 outline
    89 pathway
    90 patients
    91 pediatric database
    92 pediatric population
    93 pediatric setting
    94 pediatrics
    95 pipeline
    96 population
    97 practical considerations
    98 practice
    99 process
    100 project
    101 project ideation
    102 prominence
    103 providers
    104 research
    105 review
    106 scientists
    107 setting
    108 solution
    109 special consideration
    110 stage
    111 tool
    112 translation
    113 unique considerations
    114 work
    115 schema:name From Clinic to Computer and Back Again: Practical Considerations When Designing and Implementing Machine Learning Solutions for Pediatrics
    116 schema:pagination 1-14
    117 schema:productId N36526769a53c4a92b79ef18a3b0cc4b1
    118 Nbb306dac26e84933825aa037c52bb2bc
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130829767
    120 https://doi.org/10.1007/s40746-020-00205-4
    121 schema:sdDatePublished 2022-01-01T18:55
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher Nfc0b01d34019485686683bfac9097b56
    124 schema:url https://doi.org/10.1007/s40746-020-00205-4
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N0be9281a1e64493b84d9477e233d7f13 rdf:first sg:person.010642051233.12
    129 rdf:rest N39bf6b7baedf4b7fab466788540a4645
    130 N1dfc7e6decf84e559c8ec50bcdfdd793 rdf:first sg:person.07374730541.40
    131 rdf:rest N3a7fac7e8d56480ca941aa52ca2a6a7b
    132 N2e6c4735b4344151aa735f41129041ac rdf:first sg:person.014161012554.68
    133 rdf:rest rdf:nil
    134 N36526769a53c4a92b79ef18a3b0cc4b1 schema:name dimensions_id
    135 schema:value pub.1130829767
    136 rdf:type schema:PropertyValue
    137 N39bf6b7baedf4b7fab466788540a4645 rdf:first sg:person.010024270726.24
    138 rdf:rest Nd1da95a977574324acdb92ff0fc17209
    139 N3a7fac7e8d56480ca941aa52ca2a6a7b rdf:first sg:person.013043662721.70
    140 rdf:rest N8c006534862946c3a34f8a7ffbb3830c
    141 N8c006534862946c3a34f8a7ffbb3830c rdf:first sg:person.07354341565.59
    142 rdf:rest N0be9281a1e64493b84d9477e233d7f13
    143 Na4b4df4c124a4675bf485055aff5df61 schema:issueNumber 4
    144 rdf:type schema:PublicationIssue
    145 Nbb306dac26e84933825aa037c52bb2bc schema:name doi
    146 schema:value 10.1007/s40746-020-00205-4
    147 rdf:type schema:PropertyValue
    148 Nc2444f56eba94b3ca45d1bef24bdd857 rdf:first sg:person.01253563237.25
    149 rdf:rest N2e6c4735b4344151aa735f41129041ac
    150 Nc6c4bdb81b2b4c6b97e529d3bf56237d schema:affiliation grid-institutes:grid.42327.30
    151 schema:familyName Lu
    152 schema:givenName Stephen
    153 rdf:type schema:Person
    154 Ncb9ef4a57edd45e5b9abc8491eb268e5 schema:volumeNumber 6
    155 rdf:type schema:PublicationVolume
    156 Nd1da95a977574324acdb92ff0fc17209 rdf:first Nc6c4bdb81b2b4c6b97e529d3bf56237d
    157 rdf:rest Ndf3dff62cb87461e955d19d7de762816
    158 Ndf3dff62cb87461e955d19d7de762816 rdf:first sg:person.015142771033.26
    159 rdf:rest Nc2444f56eba94b3ca45d1bef24bdd857
    160 Nfc0b01d34019485686683bfac9097b56 schema:name Springer Nature - SN SciGraph project
    161 rdf:type schema:Organization
    162 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Information and Computing Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Artificial Intelligence and Image Processing
    167 rdf:type schema:DefinedTerm
    168 sg:journal.1051358 schema:issn 2198-6088
    169 schema:name Current Treatment Options in Pediatrics
    170 schema:publisher Springer Nature
    171 rdf:type schema:Periodical
    172 sg:person.010024270726.24 schema:affiliation grid-institutes:grid.21100.32
    173 schema:familyName Stedman
    174 schema:givenName Ian
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010024270726.24
    176 rdf:type schema:Person
    177 sg:person.010642051233.12 schema:affiliation grid-institutes:grid.17063.33
    178 schema:familyName Morgado
    179 schema:givenName Felipe
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010642051233.12
    181 rdf:type schema:Person
    182 sg:person.01253563237.25 schema:affiliation grid-institutes:grid.494618.6
    183 schema:familyName Brudno
    184 schema:givenName Michael
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25
    186 rdf:type schema:Person
    187 sg:person.013043662721.70 schema:affiliation grid-institutes:grid.17063.33
    188 schema:familyName Harish
    189 schema:givenName Vinyas
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013043662721.70
    191 rdf:type schema:Person
    192 sg:person.014161012554.68 schema:affiliation grid-institutes:grid.42327.30
    193 schema:familyName Singh
    194 schema:givenName Devin
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014161012554.68
    196 rdf:type schema:Person
    197 sg:person.015142771033.26 schema:affiliation grid-institutes:grid.42327.30
    198 schema:familyName Drysdale
    199 schema:givenName Erik
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142771033.26
    201 rdf:type schema:Person
    202 sg:person.07354341565.59 schema:affiliation grid-institutes:grid.17063.33
    203 schema:familyName McCoy
    204 schema:givenName Liam G.
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354341565.59
    206 rdf:type schema:Person
    207 sg:person.07374730541.40 schema:affiliation grid-institutes:grid.17063.33
    208 schema:familyName Nagaraj
    209 schema:givenName Sujay
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374730541.40
    211 rdf:type schema:Person
    212 sg:pub.10.1038/s41551-016-0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074248475
    213 https://doi.org/10.1038/s41551-016-0024
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/s41586-019-1799-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123770599
    216 https://doi.org/10.1038/s41586-019-1799-6
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/s41586-020-2679-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131659323
    219 https://doi.org/10.1038/s41586-020-2679-9
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/s41591-018-0213-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107542124
    222 https://doi.org/10.1038/s41591-018-0213-5
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/s41591-018-0300-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110955659
    225 https://doi.org/10.1038/s41591-018-0300-7
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/s41591-018-0335-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112058854
    228 https://doi.org/10.1038/s41591-018-0335-9
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/s41591-019-0548-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120396052
    231 https://doi.org/10.1038/s41591-019-0548-6
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/s41591-019-0609-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1121124373
    234 https://doi.org/10.1038/s41591-019-0609-x
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/s41591-019-0649-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124048252
    237 https://doi.org/10.1038/s41591-019-0649-2
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/s41597-020-0355-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124048470
    240 https://doi.org/10.1038/s41597-020-0355-4
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/1472-6947-13-s2-s14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898636
    243 https://doi.org/10.1186/1472-6947-13-s2-s14
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/1472-6963-13-413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018565503
    246 https://doi.org/10.1186/1472-6963-13-413
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/1748-5908-1-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031736962
    249 https://doi.org/10.1186/1748-5908-1-16
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1186/s12909-019-1528-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113184539
    252 https://doi.org/10.1186/s12909-019-1528-8
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/s12916-019-1426-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122171842
    255 https://doi.org/10.1186/s12916-019-1426-2
    256 rdf:type schema:CreativeWork
    257 grid-institutes:grid.17063.33 schema:alternateName Department of Computer Science, University of Toronto, Toronto, Ontario Canada
    258 Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
    259 Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario Canada
    260 schema:name Department of Computer Science, University of Toronto, Toronto, Ontario Canada
    261 Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
    262 Faculty of Medicine, University of Toronto, Toronto, Ontario Canada
    263 Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario Canada
    264 rdf:type schema:Organization
    265 grid-institutes:grid.21100.32 schema:alternateName School of Public Policy and Administration, York University, Toronto, Ontario Canada
    266 schema:name School of Public Policy and Administration, York University, Toronto, Ontario Canada
    267 rdf:type schema:Organization
    268 grid-institutes:grid.42327.30 schema:alternateName Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
    269 schema:name Department of Computer Science, University of Toronto, Toronto, Ontario Canada
    270 Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
    271 rdf:type schema:Organization
    272 grid-institutes:grid.494618.6 schema:alternateName Vector Institute for Artificial Intelligence, Toronto, Ontario Canada
    273 schema:name Department of Computer Science, University of Toronto, Toronto, Ontario Canada
    274 Paediatric Emergency Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
    275 University Health Network, Toronto, Ontario Canada
    276 Vector Institute for Artificial Intelligence, Toronto, Ontario Canada
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...