Big Data Paradigm: What is the Status of Privacy and Security? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Kenneth David Strang, Zhaohao Sun

ABSTRACT

We extended the big data body of knowledge by analyzing the longitudinal literature to highlight important research topics and identify critical gaps. We initially collected 79,012 articles from 1900 to 2016 related to big data. We refined our sample to 13,029 articles allowing us to determine that the big data paradigm commenced in late 2011 and the research production exponentially rose starting in 2012, which approximated a Weibull distribution that captured 82% of the variance (p<.01). We developed a dominant topic list for the big data body of knowledge that contained 49 keywords resulting in an inter-rater reliability of 93% (r2=0.89). We found there were 13 dominant topics that captured 49% of the big data production in journals during 2011–2016 but privacy and security related topics accounted for only 2% of those outcomes. We analyzed the content of 970 journal manuscripts produced during the first of 2016 to determine the current status of big data research. The results revealed a vastly different current trend with too many literature reviews and conceptual papers that accounted for 41% of the current big data knowledge production. Interestingly, we observed new big data topics emerging from the healthcare and physical sciences disciplines. More... »

PAGES

1-17

References to SciGraph publications

  • 2014. Open Issues and Outlook in BIG DATA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40745-016-0096-6

    DOI

    http://dx.doi.org/10.1007/s40745-016-0096-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053843868


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "SUNY Plattsburgh", 
              "id": "https://www.grid.ac/institutes/grid.264274.1", 
              "name": [
                "Regional Higher Education Center, School of Business and Economics, State University of New York, Plattsburgh, 640 Bay Road, 12804, Queensbury, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strang", 
            "givenName": "Kenneth David", 
            "id": "sg:person.014334744141.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014334744141.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Business Studies, PNG University of Technology, 411, Lae, Papua New Guinea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Zhaohao", 
            "id": "sg:person.010544323311.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544323311.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.2190/et.43.2.d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009080947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2190/et.43.2.d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009080947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0361526x.2014.879805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009730086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.347.6221.468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011304095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jop.2014.001308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014865495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-06245-7_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019191047", 
              "https://doi.org/10.1007/978-3-319-06245-7_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chb.2015.12.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020549787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2500873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030277687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.telpol.2014.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031086162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpdc.2014.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031831029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jlme.12040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032193570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jlme.12040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032193570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/jac.0000000000000041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033384888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/jac.0000000000000041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033384888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jlme.12258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036904728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jlme.12258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036904728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0263775815595814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041112851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0263775815595814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041112851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ms.2014.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041203409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0145935x.2014.955382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042711130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/asi.23294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047275429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2015.05.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047560689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ms.2014.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047947944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijbidm.2015.072211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067437188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/003335491513000211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074243481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/003335491513000211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074243481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079271620", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03", 
        "datePublishedReg": "2017-03-01", 
        "description": "We extended the big data body of knowledge by analyzing the longitudinal literature to highlight important research topics and identify critical gaps. We initially collected 79,012 articles from 1900 to 2016 related to big data. We refined our sample to 13,029 articles allowing us to determine that the big data paradigm commenced in late 2011 and the research production exponentially rose starting in 2012, which approximated a Weibull distribution that captured 82% of the variance (p<.01). We developed a dominant topic list for the big data body of knowledge that contained 49 keywords resulting in an inter-rater reliability of 93% (r2=0.89). We found there were 13 dominant topics that captured 49% of the big data production in journals during 2011\u20132016 but privacy and security related topics accounted for only 2% of those outcomes. We analyzed the content of 970 journal manuscripts produced during the first of 2016 to determine the current status of big data research. The results revealed a vastly different current trend with too many literature reviews and conceptual papers that accounted for 41% of the current big data knowledge production. Interestingly, we observed new big data topics emerging from the healthcare and physical sciences disciplines.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40745-016-0096-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136160", 
            "issn": [
              "2198-5804", 
              "2198-5812"
            ], 
            "name": "Annals of Data Science", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Big Data Paradigm: What is the Status of Privacy and Security?", 
        "pagination": "1-17", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "486652900bded0e775ceb25cfd9343865d628b8d7fa08340b50d4f0d808ac288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40745-016-0096-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053843868"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40745-016-0096-6", 
          "https://app.dimensions.ai/details/publication/pub.1053843868"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40745-016-0096-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40745-016-0096-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40745-016-0096-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40745-016-0096-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40745-016-0096-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40745-016-0096-6 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N971678d8fe904881a6fafc4ff5a14b66
    4 schema:citation sg:pub.10.1007/978-3-319-06245-7_7
    5 https://app.dimensions.ai/details/publication/pub.1079271620
    6 https://doi.org/10.1002/asi.23294
    7 https://doi.org/10.1016/j.chb.2015.12.050
    8 https://doi.org/10.1016/j.ins.2015.05.040
    9 https://doi.org/10.1016/j.jpdc.2014.01.003
    10 https://doi.org/10.1016/j.telpol.2014.10.002
    11 https://doi.org/10.1080/0145935x.2014.955382
    12 https://doi.org/10.1080/0361526x.2014.879805
    13 https://doi.org/10.1097/jac.0000000000000041
    14 https://doi.org/10.1109/ms.2014.16
    15 https://doi.org/10.1109/ms.2014.47
    16 https://doi.org/10.1111/jlme.12040
    17 https://doi.org/10.1111/jlme.12258
    18 https://doi.org/10.1126/science.347.6221.468
    19 https://doi.org/10.1145/2500873
    20 https://doi.org/10.1177/003335491513000211
    21 https://doi.org/10.1177/0263775815595814
    22 https://doi.org/10.1200/jop.2014.001308
    23 https://doi.org/10.1504/ijbidm.2015.072211
    24 https://doi.org/10.2190/et.43.2.d
    25 schema:datePublished 2017-03
    26 schema:datePublishedReg 2017-03-01
    27 schema:description We extended the big data body of knowledge by analyzing the longitudinal literature to highlight important research topics and identify critical gaps. We initially collected 79,012 articles from 1900 to 2016 related to big data. We refined our sample to 13,029 articles allowing us to determine that the big data paradigm commenced in late 2011 and the research production exponentially rose starting in 2012, which approximated a Weibull distribution that captured 82% of the variance (p<.01). We developed a dominant topic list for the big data body of knowledge that contained 49 keywords resulting in an inter-rater reliability of 93% (r2=0.89). We found there were 13 dominant topics that captured 49% of the big data production in journals during 2011–2016 but privacy and security related topics accounted for only 2% of those outcomes. We analyzed the content of 970 journal manuscripts produced during the first of 2016 to determine the current status of big data research. The results revealed a vastly different current trend with too many literature reviews and conceptual papers that accounted for 41% of the current big data knowledge production. Interestingly, we observed new big data topics emerging from the healthcare and physical sciences disciplines.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N07f09b28a43f487fb4af3bde21c26861
    32 N53126064d71c43b2b4a9eae782f99e3a
    33 sg:journal.1136160
    34 schema:name Big Data Paradigm: What is the Status of Privacy and Security?
    35 schema:pagination 1-17
    36 schema:productId N3618ae1846f84554892edabeab004fd7
    37 N431a183e8ca04f94ac089defad5dc32d
    38 Nacb96bf9a3c34a1fa17d26ca06e6093b
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053843868
    40 https://doi.org/10.1007/s40745-016-0096-6
    41 schema:sdDatePublished 2019-04-11T10:01
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N24eb54a257784e58bb1da4a5df943ec0
    44 schema:url https://link.springer.com/10.1007%2Fs40745-016-0096-6
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N07f09b28a43f487fb4af3bde21c26861 schema:volumeNumber 4
    49 rdf:type schema:PublicationVolume
    50 N19668b15d88049c9a2b7845a446560ce schema:name Department of Business Studies, PNG University of Technology, 411, Lae, Papua New Guinea
    51 rdf:type schema:Organization
    52 N24eb54a257784e58bb1da4a5df943ec0 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N3618ae1846f84554892edabeab004fd7 schema:name readcube_id
    55 schema:value 486652900bded0e775ceb25cfd9343865d628b8d7fa08340b50d4f0d808ac288
    56 rdf:type schema:PropertyValue
    57 N431a183e8ca04f94ac089defad5dc32d schema:name doi
    58 schema:value 10.1007/s40745-016-0096-6
    59 rdf:type schema:PropertyValue
    60 N53126064d71c43b2b4a9eae782f99e3a schema:issueNumber 1
    61 rdf:type schema:PublicationIssue
    62 N971678d8fe904881a6fafc4ff5a14b66 rdf:first sg:person.014334744141.30
    63 rdf:rest Nd0dd18e0f13f4635be06e6c155c0fe23
    64 Nacb96bf9a3c34a1fa17d26ca06e6093b schema:name dimensions_id
    65 schema:value pub.1053843868
    66 rdf:type schema:PropertyValue
    67 Nd0dd18e0f13f4635be06e6c155c0fe23 rdf:first sg:person.010544323311.73
    68 rdf:rest rdf:nil
    69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Information and Computing Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Information Systems
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1136160 schema:issn 2198-5804
    76 2198-5812
    77 schema:name Annals of Data Science
    78 rdf:type schema:Periodical
    79 sg:person.010544323311.73 schema:affiliation N19668b15d88049c9a2b7845a446560ce
    80 schema:familyName Sun
    81 schema:givenName Zhaohao
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544323311.73
    83 rdf:type schema:Person
    84 sg:person.014334744141.30 schema:affiliation https://www.grid.ac/institutes/grid.264274.1
    85 schema:familyName Strang
    86 schema:givenName Kenneth David
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014334744141.30
    88 rdf:type schema:Person
    89 sg:pub.10.1007/978-3-319-06245-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019191047
    90 https://doi.org/10.1007/978-3-319-06245-7_7
    91 rdf:type schema:CreativeWork
    92 https://app.dimensions.ai/details/publication/pub.1079271620 schema:CreativeWork
    93 https://doi.org/10.1002/asi.23294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047275429
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/j.chb.2015.12.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020549787
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.ins.2015.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047560689
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.jpdc.2014.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031831029
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.telpol.2014.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031086162
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1080/0145935x.2014.955382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042711130
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1080/0361526x.2014.879805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009730086
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1097/jac.0000000000000041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033384888
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/ms.2014.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041203409
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/ms.2014.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047947944
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1111/jlme.12040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032193570
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1111/jlme.12258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036904728
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1126/science.347.6221.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011304095
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1145/2500873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030277687
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1177/003335491513000211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074243481
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1177/0263775815595814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041112851
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1200/jop.2014.001308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014865495
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1504/ijbidm.2015.072211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067437188
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.2190/et.43.2.d schema:sameAs https://app.dimensions.ai/details/publication/pub.1009080947
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.264274.1 schema:alternateName SUNY Plattsburgh
    132 schema:name Regional Higher Education Center, School of Business and Economics, State University of New York, Plattsburgh, 640 Bay Road, 12804, Queensbury, NY, USA
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...