Ranking Countries by Medal Priorities Won in the 2014 Sochi Winter Olympics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06

AUTHORS

Thomas L. Saaty, Xiaoyue Liu, Michael Sanserino

ABSTRACT

The total number of gold, silver and bronze medals won by each country in the Olympics is often regarded as an indicator of that country’s winning rank. However, the values of the medals differ according to the order in which they are won in each event. One reason why it is done this way is that there has not been a scientific way to assign an appropriate priority for each type of medal which so far has been treated as an intangible. Sometimes people have used the ordinal numbers 3, 2, 1 to rank the medals, but adding ordinals has no arithmetic legitimacy because ordinals cannot be added or multiplied. Here we use the mathematical theory, the analytic hierarchy process, for the measurement of intangibles to quantify the priorities of different games according to environmental and people factors and also quantify the priorities of gold, silver and bronze medals, and then use these priorities to compute the total scores of all three types of medals won by each country in order to determine the ranking of the countries which won medals in the 22nd Winter Olympics held February 07–23, 2014, in Sochi, Russia.Graphical Abstract More... »

PAGES

151-172

References to SciGraph publications

  • 2008-12-06. Who won the 2008 Olympics? A multicriteria decision of measuring intangibles in JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40745-014-0012-x

    DOI

    http://dx.doi.org/10.1007/s40745-014-0012-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046298496


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Business and Management", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Pittsburgh, 15260, Pittsburgh, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "University of Pittsburgh, 15260, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saaty", 
            "givenName": "Thomas L.", 
            "id": "sg:person.010070352303.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070352303.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Institute of Technology, 10081, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.43555.32", 
              "name": [
                "Beijing Institute of Technology, 10081, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Xiaoyue", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pittsburgh Post Dispatch, 15222, Pittsburgh, PA, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Pittsburgh Post Dispatch, 15222, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sanserino", 
            "givenName": "Michael", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11518-008-5092-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045917620", 
              "https://doi.org/10.1007/s11518-008-5092-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06", 
        "datePublishedReg": "2014-06-01", 
        "description": "The total number of gold, silver and bronze medals won by each country in the Olympics is often regarded as an indicator of that country\u2019s winning rank. However, the values of the medals differ according to the order in which they are won in each event. One reason why it is done this way is that there has not been a scientific way to assign an appropriate priority for each type of medal which so far has been treated as an intangible. Sometimes people have used the ordinal numbers 3, 2, 1 to rank the medals, but adding ordinals has no arithmetic legitimacy because ordinals cannot be added or multiplied. Here we use the mathematical theory, the analytic hierarchy process, for the measurement of intangibles to quantify the priorities of different games according to environmental and people factors and also quantify the priorities of gold, silver and bronze medals, and then use these priorities to compute the total scores of all three types of medals won by each country in order to determine the ranking of the countries which won medals in the 22nd Winter Olympics held February 07\u201323, 2014, in Sochi, Russia.Graphical Abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40745-014-0012-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136160", 
            "issn": [
              "2198-5804", 
              "2198-5812"
            ], 
            "name": "Annals of Data Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "keywords": [
          "mathematical theory", 
          "ordinal", 
          "measurement of intangibles", 
          "total number", 
          "number", 
          "Medal", 
          "rank", 
          "order", 
          "way", 
          "scientific way", 
          "types", 
          "number 3", 
          "theory", 
          "analytic hierarchy process", 
          "hierarchy process", 
          "measurements", 
          "gold", 
          "silver", 
          "bronze medals", 
          "countries", 
          "Olympics", 
          "indicators", 
          "values", 
          "reasons", 
          "priority", 
          "intangibles", 
          "process", 
          "different games", 
          "game", 
          "ranking", 
          "Winter Olympics", 
          "Sochi", 
          "Russia", 
          "events", 
          "appropriate priorities", 
          "people", 
          "legitimacy", 
          "people factors", 
          "factors", 
          "total score", 
          "scores", 
          "Sochi Winter Olympics"
        ], 
        "name": "Ranking Countries by Medal Priorities Won in the 2014 Sochi Winter Olympics", 
        "pagination": "151-172", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046298496"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40745-014-0012-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40745-014-0012-x", 
          "https://app.dimensions.ai/details/publication/pub.1046298496"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_643.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40745-014-0012-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40745-014-0012-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40745-014-0012-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40745-014-0012-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40745-014-0012-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      21 PREDICATES      72 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40745-014-0012-x schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 anzsrc-for:08
    4 anzsrc-for:0801
    5 anzsrc-for:15
    6 anzsrc-for:1503
    7 schema:author Ndfe4c2bb549a47ff883eb3b0e6baaf9c
    8 schema:citation sg:pub.10.1007/s11518-008-5092-8
    9 schema:datePublished 2014-06
    10 schema:datePublishedReg 2014-06-01
    11 schema:description The total number of gold, silver and bronze medals won by each country in the Olympics is often regarded as an indicator of that country’s winning rank. However, the values of the medals differ according to the order in which they are won in each event. One reason why it is done this way is that there has not been a scientific way to assign an appropriate priority for each type of medal which so far has been treated as an intangible. Sometimes people have used the ordinal numbers 3, 2, 1 to rank the medals, but adding ordinals has no arithmetic legitimacy because ordinals cannot be added or multiplied. Here we use the mathematical theory, the analytic hierarchy process, for the measurement of intangibles to quantify the priorities of different games according to environmental and people factors and also quantify the priorities of gold, silver and bronze medals, and then use these priorities to compute the total scores of all three types of medals won by each country in order to determine the ranking of the countries which won medals in the 22nd Winter Olympics held February 07–23, 2014, in Sochi, Russia.Graphical Abstract
    12 schema:genre article
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N0d6a06852d1c4bec95da20798d1fddcc
    15 Na663e18589a74695be2499a004b83f25
    16 sg:journal.1136160
    17 schema:keywords Medal
    18 Olympics
    19 Russia
    20 Sochi
    21 Sochi Winter Olympics
    22 Winter Olympics
    23 analytic hierarchy process
    24 appropriate priorities
    25 bronze medals
    26 countries
    27 different games
    28 events
    29 factors
    30 game
    31 gold
    32 hierarchy process
    33 indicators
    34 intangibles
    35 legitimacy
    36 mathematical theory
    37 measurement of intangibles
    38 measurements
    39 number
    40 number 3
    41 order
    42 ordinal
    43 people
    44 people factors
    45 priority
    46 process
    47 rank
    48 ranking
    49 reasons
    50 scientific way
    51 scores
    52 silver
    53 theory
    54 total number
    55 total score
    56 types
    57 values
    58 way
    59 schema:name Ranking Countries by Medal Priorities Won in the 2014 Sochi Winter Olympics
    60 schema:pagination 151-172
    61 schema:productId N0facf306078d457fa487f6913d41a0ec
    62 Nbb52eb3888db4fffa600caa3e0ad71bf
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046298496
    64 https://doi.org/10.1007/s40745-014-0012-x
    65 schema:sdDatePublished 2022-12-01T06:32
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N6bbe5497612c4850b79fd43c41e2f725
    68 schema:url https://doi.org/10.1007/s40745-014-0012-x
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N0d6a06852d1c4bec95da20798d1fddcc schema:volumeNumber 1
    73 rdf:type schema:PublicationVolume
    74 N0facf306078d457fa487f6913d41a0ec schema:name doi
    75 schema:value 10.1007/s40745-014-0012-x
    76 rdf:type schema:PropertyValue
    77 N133b6aac75524fe893596dde6812d8a2 rdf:first N2143c0277492400d9d1d42105720441c
    78 rdf:rest rdf:nil
    79 N2143c0277492400d9d1d42105720441c schema:affiliation grid-institutes:None
    80 schema:familyName Sanserino
    81 schema:givenName Michael
    82 rdf:type schema:Person
    83 N4885564ccf34439891496f87692b6860 schema:affiliation grid-institutes:grid.43555.32
    84 schema:familyName Liu
    85 schema:givenName Xiaoyue
    86 rdf:type schema:Person
    87 N59b09ceedb524623bcb1052ee057788e rdf:first N4885564ccf34439891496f87692b6860
    88 rdf:rest N133b6aac75524fe893596dde6812d8a2
    89 N6bbe5497612c4850b79fd43c41e2f725 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 Na663e18589a74695be2499a004b83f25 schema:issueNumber 2
    92 rdf:type schema:PublicationIssue
    93 Nbb52eb3888db4fffa600caa3e0ad71bf schema:name dimensions_id
    94 schema:value pub.1046298496
    95 rdf:type schema:PropertyValue
    96 Ndfe4c2bb549a47ff883eb3b0e6baaf9c rdf:first sg:person.010070352303.49
    97 rdf:rest N59b09ceedb524623bcb1052ee057788e
    98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Statistics
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Information and Computing Sciences
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Artificial Intelligence and Image Processing
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Commerce, Management, Tourism and Services
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Business and Management
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1136160 schema:issn 2198-5804
    117 2198-5812
    118 schema:name Annals of Data Science
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.010070352303.49 schema:affiliation grid-institutes:grid.21925.3d
    122 schema:familyName Saaty
    123 schema:givenName Thomas L.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070352303.49
    125 rdf:type schema:Person
    126 sg:pub.10.1007/s11518-008-5092-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045917620
    127 https://doi.org/10.1007/s11518-008-5092-8
    128 rdf:type schema:CreativeWork
    129 grid-institutes:None schema:alternateName Pittsburgh Post Dispatch, 15222, Pittsburgh, PA, USA
    130 schema:name Pittsburgh Post Dispatch, 15222, Pittsburgh, PA, USA
    131 rdf:type schema:Organization
    132 grid-institutes:grid.21925.3d schema:alternateName University of Pittsburgh, 15260, Pittsburgh, PA, USA
    133 schema:name University of Pittsburgh, 15260, Pittsburgh, PA, USA
    134 rdf:type schema:Organization
    135 grid-institutes:grid.43555.32 schema:alternateName Beijing Institute of Technology, 10081, Beijing, China
    136 schema:name Beijing Institute of Technology, 10081, Beijing, China
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...