Bayesian Methods for Quantifying and Reducing Uncertainty and Error in Forest Models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-09

AUTHORS

Marcel van Oijen

ABSTRACT

Purpose of reviewForest models are tools for analysis and prediction of productivity and other services. Model outputs can only be useful if possible errors in inputs and model structure are recognized. However, errors cannot be quantified directly, making uncertainty inevitable. In this paper, we aim to clarify terminological confusion around the concepts of error and uncertainty and review current methods for addressing uncertainty in forest modelling.Recent findingsModellers increasingly recognize that all uncertainties—in data, model inputs and model structure—can be represented using probability distributions. This has stimulated the use of Bayesian methods for quantifying and reducing uncertainty and error in models of forests and other vegetation. The Achilles’ heel of Bayesian methods has always been their computational demand, but solutions are being found.SummaryWe conclude that future work will likely include (1) more use of Bayesian methods, (2) more use of hierarchical modelling, (3) replacement of model spin-up by Bayesian calibration, (4) more use of ensemble modelling and Bayesian model averaging, (5) new ways to account for model structural error in calibration, (6) better software for Bayesian calibration of complex models, (7) faster Markov chain Monte Carlo algorithms, (8) more use of model emulators, (9) novel uncertainty visualization techniques, (10) more use of graphical modelling and (11) more use of risk analysis. More... »

PAGES

269-280

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40725-017-0069-9

DOI

http://dx.doi.org/10.1007/s40725-017-0069-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091511598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, UK", 
          "id": "http://www.grid.ac/institutes/grid.494924.6", 
          "name": [
            "Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Oijen", 
        "givenName": "Marcel", 
        "id": "sg:person.010016565505.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010016565505.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40725-015-0009-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005540516", 
          "https://doi.org/10.1007/s40725-015-0009-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11267-005-3015-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013735488", 
          "https://doi.org/10.1007/s11267-005-3015-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041671822", 
          "https://doi.org/10.1038/nclimate2621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40725-015-0014-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037528351", 
          "https://doi.org/10.1007/s40725-015-0014-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-016-1694-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016393692", 
          "https://doi.org/10.1007/s10584-016-1694-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-010-9917-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022114438", 
          "https://doi.org/10.1007/s10584-010-9917-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9156-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022087214", 
          "https://doi.org/10.1007/s10584-006-9156-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72954-9_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037282177", 
          "https://doi.org/10.1007/978-3-540-72954-9_12"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-09", 
    "datePublishedReg": "2017-09-09", 
    "description": "Purpose of reviewForest models are tools for analysis and prediction of productivity and other services. Model outputs can only be useful if possible errors in inputs and model structure are recognized. However, errors cannot be quantified directly, making uncertainty inevitable. In this paper, we aim to clarify terminological confusion around the concepts of error and uncertainty and review current methods for addressing uncertainty in forest modelling.Recent findingsModellers increasingly recognize that all uncertainties\u2014in data, model inputs and model structure\u2014can be represented using probability distributions. This has stimulated the use of Bayesian methods for quantifying and reducing uncertainty and error in models of forests and other vegetation. The Achilles\u2019 heel of Bayesian methods has always been their computational demand, but solutions are being found.SummaryWe conclude that future work will likely include (1) more use of Bayesian methods, (2) more use of hierarchical modelling, (3) replacement of model spin-up by Bayesian calibration, (4) more use of ensemble modelling and Bayesian model averaging, (5) new ways to account for model structural error in calibration, (6) better software for Bayesian calibration of complex models, (7) faster Markov chain Monte Carlo algorithms, (8) more use of model emulators, (9) novel uncertainty visualization techniques, (10) more use of graphical modelling and (11) more use of risk analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40725-017-0069-9", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2761990", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136231", 
        "issn": [
          "2198-6436"
        ], 
        "name": "Current Forestry Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "Bayesian methods", 
      "Bayesian calibration", 
      "Markov chain Monte Carlo algorithm", 
      "replacement of models", 
      "uncertainty visualization techniques", 
      "Monte Carlo algorithm", 
      "model structure", 
      "Bayesian model averaging", 
      "model structural error", 
      "better software", 
      "Carlo algorithm", 
      "probability distribution", 
      "graphical modelling", 
      "computational demands", 
      "visualization techniques", 
      "model averaging", 
      "hierarchical modelling", 
      "complex models", 
      "models of forests", 
      "model emulator", 
      "forest model", 
      "concept of error", 
      "structural errors", 
      "ensemble modelling", 
      "prediction of productivity", 
      "model output", 
      "future work", 
      "uncertainty", 
      "modelling", 
      "Reducing Uncertainty", 
      "model inputs", 
      "error", 
      "possible errors", 
      "new way", 
      "current methods", 
      "forest modelling", 
      "emulator", 
      "algorithm", 
      "software", 
      "model", 
      "risk analysis", 
      "input", 
      "more use", 
      "services", 
      "averaging", 
      "method", 
      "solution", 
      "calibration", 
      "tool", 
      "use", 
      "structure", 
      "concept", 
      "technique", 
      "prediction", 
      "demand", 
      "distribution", 
      "output", 
      "way", 
      "work", 
      "data", 
      "terminological confusion", 
      "analysis", 
      "quantifying", 
      "purpose", 
      "forest", 
      "productivity", 
      "SummaryWe", 
      "confusion", 
      "heel", 
      "replacement", 
      "Achilles", 
      "vegetation", 
      "paper"
    ], 
    "name": "Bayesian Methods for Quantifying and Reducing Uncertainty and Error in Forest Models", 
    "pagination": "269-280", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091511598"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40725-017-0069-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40725-017-0069-9", 
      "https://app.dimensions.ai/details/publication/pub.1091511598"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_723.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40725-017-0069-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40725-017-0069-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40725-017-0069-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40725-017-0069-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40725-017-0069-9'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      107 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40725-017-0069-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 anzsrc-for:08
4 anzsrc-for:0801
5 schema:author Naac1bef54cf340f3b3d1437b48e9b95e
6 schema:citation sg:pub.10.1007/978-3-540-72954-9_12
7 sg:pub.10.1007/s10584-006-9156-9
8 sg:pub.10.1007/s10584-010-9917-3
9 sg:pub.10.1007/s10584-016-1694-1
10 sg:pub.10.1007/s11267-005-3015-y
11 sg:pub.10.1007/s40725-015-0009-5
12 sg:pub.10.1007/s40725-015-0014-8
13 sg:pub.10.1038/nclimate2621
14 schema:datePublished 2017-09-09
15 schema:datePublishedReg 2017-09-09
16 schema:description Purpose of reviewForest models are tools for analysis and prediction of productivity and other services. Model outputs can only be useful if possible errors in inputs and model structure are recognized. However, errors cannot be quantified directly, making uncertainty inevitable. In this paper, we aim to clarify terminological confusion around the concepts of error and uncertainty and review current methods for addressing uncertainty in forest modelling.Recent findingsModellers increasingly recognize that all uncertainties—in data, model inputs and model structure—can be represented using probability distributions. This has stimulated the use of Bayesian methods for quantifying and reducing uncertainty and error in models of forests and other vegetation. The Achilles’ heel of Bayesian methods has always been their computational demand, but solutions are being found.SummaryWe conclude that future work will likely include (1) more use of Bayesian methods, (2) more use of hierarchical modelling, (3) replacement of model spin-up by Bayesian calibration, (4) more use of ensemble modelling and Bayesian model averaging, (5) new ways to account for model structural error in calibration, (6) better software for Bayesian calibration of complex models, (7) faster Markov chain Monte Carlo algorithms, (8) more use of model emulators, (9) novel uncertainty visualization techniques, (10) more use of graphical modelling and (11) more use of risk analysis.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf Na439135f2a99441d8907eec150798ec1
20 Nda9a3c0343624eafb1c7a7dfbb765764
21 sg:journal.1136231
22 schema:keywords Achilles
23 Bayesian calibration
24 Bayesian methods
25 Bayesian model averaging
26 Carlo algorithm
27 Markov chain Monte Carlo algorithm
28 Monte Carlo algorithm
29 Reducing Uncertainty
30 SummaryWe
31 algorithm
32 analysis
33 averaging
34 better software
35 calibration
36 complex models
37 computational demands
38 concept
39 concept of error
40 confusion
41 current methods
42 data
43 demand
44 distribution
45 emulator
46 ensemble modelling
47 error
48 forest
49 forest model
50 forest modelling
51 future work
52 graphical modelling
53 heel
54 hierarchical modelling
55 input
56 method
57 model
58 model averaging
59 model emulator
60 model inputs
61 model output
62 model structural error
63 model structure
64 modelling
65 models of forests
66 more use
67 new way
68 output
69 paper
70 possible errors
71 prediction
72 prediction of productivity
73 probability distribution
74 productivity
75 purpose
76 quantifying
77 replacement
78 replacement of models
79 risk analysis
80 services
81 software
82 solution
83 structural errors
84 structure
85 technique
86 terminological confusion
87 tool
88 uncertainty
89 uncertainty visualization techniques
90 use
91 vegetation
92 visualization techniques
93 way
94 work
95 schema:name Bayesian Methods for Quantifying and Reducing Uncertainty and Error in Forest Models
96 schema:pagination 269-280
97 schema:productId N0c74edeac375442192b69d172b54eee1
98 N48670f0d3c5c47cfaa63392bc738b12f
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091511598
100 https://doi.org/10.1007/s40725-017-0069-9
101 schema:sdDatePublished 2022-11-24T21:02
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Na9475c9acb6b45038bb9fffa7448c566
104 schema:url https://doi.org/10.1007/s40725-017-0069-9
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N0c74edeac375442192b69d172b54eee1 schema:name dimensions_id
109 schema:value pub.1091511598
110 rdf:type schema:PropertyValue
111 N48670f0d3c5c47cfaa63392bc738b12f schema:name doi
112 schema:value 10.1007/s40725-017-0069-9
113 rdf:type schema:PropertyValue
114 Na439135f2a99441d8907eec150798ec1 schema:volumeNumber 3
115 rdf:type schema:PublicationVolume
116 Na9475c9acb6b45038bb9fffa7448c566 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Naac1bef54cf340f3b3d1437b48e9b95e rdf:first sg:person.010016565505.00
119 rdf:rest rdf:nil
120 Nda9a3c0343624eafb1c7a7dfbb765764 schema:issueNumber 4
121 rdf:type schema:PublicationIssue
122 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
123 schema:name Mathematical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
126 schema:name Statistics
127 rdf:type schema:DefinedTerm
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
132 schema:name Artificial Intelligence and Image Processing
133 rdf:type schema:DefinedTerm
134 sg:grant.2761990 http://pending.schema.org/fundedItem sg:pub.10.1007/s40725-017-0069-9
135 rdf:type schema:MonetaryGrant
136 sg:journal.1136231 schema:issn 2198-6436
137 schema:name Current Forestry Reports
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.010016565505.00 schema:affiliation grid-institutes:grid.494924.6
141 schema:familyName van Oijen
142 schema:givenName Marcel
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010016565505.00
144 rdf:type schema:Person
145 sg:pub.10.1007/978-3-540-72954-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037282177
146 https://doi.org/10.1007/978-3-540-72954-9_12
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10584-006-9156-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087214
149 https://doi.org/10.1007/s10584-006-9156-9
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10584-010-9917-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022114438
152 https://doi.org/10.1007/s10584-010-9917-3
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10584-016-1694-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016393692
155 https://doi.org/10.1007/s10584-016-1694-1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s11267-005-3015-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013735488
158 https://doi.org/10.1007/s11267-005-3015-y
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s40725-015-0009-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005540516
161 https://doi.org/10.1007/s40725-015-0009-5
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s40725-015-0014-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037528351
164 https://doi.org/10.1007/s40725-015-0014-8
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nclimate2621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041671822
167 https://doi.org/10.1038/nclimate2621
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.494924.6 schema:alternateName Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, UK
170 schema:name Centre for Ecology & Hydrology, Bush Estate, EH26 0QB, Penicuik, UK
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...