Ontology type: schema:ScholarlyArticle
2017-08-16
AUTHORSG. A. Athanassoulis, K. A. Belibassakis, Ch. E. Papoutsellis
ABSTRACTA novel, exact, Hamiltonian system of two nonlinear evolution equations, coupled with a time-independent system of horizontal differential equations providing the Dirichlet-to-Neumann operator for any bathymetry, is applied to the study of the evolution of wave trains in finite depth, aiming at the identification of nonlinear high waves in finite depth, and over a sloping bottom. The vertical structure of the wave field is exactly represented up to the instantaneous free surface, by means of an appropriately constructed, rapidly convergent, local vertical series expansion of the wave potential. This Hamiltonian system is used for studying the fully nonlinear refocusing of transient wave groups, obtained by linear backpropagation of high-amplitude wave trains constructed by the theory of quasi-determinism. The results presented give a first quantification of the effects of sloping bottom and of spectral bandwidth on rogue-wave dynamics and kinematics, in finite depth. More... »
PAGES373-383
http://scigraph.springernature.com/pub.10.1007/s40722-017-0096-4
DOIhttp://dx.doi.org/10.1007/s40722-017-0096-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1091222354
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Research Center for High Performance Computing, ITMO University, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.35915.3b",
"name": [
"National Technical University of Athens, School of Naval Architecture and Marine Engineering, Athens, Greece",
"Research Center for High Performance Computing, ITMO University, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Athanassoulis",
"givenName": "G. A.",
"id": "sg:person.014012275367.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014012275367.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Technical University of Athens, School of Naval Architecture and Marine Engineering, Athens, Greece",
"id": "http://www.grid.ac/institutes/grid.4241.3",
"name": [
"National Technical University of Athens, School of Naval Architecture and Marine Engineering, Athens, Greece"
],
"type": "Organization"
},
"familyName": "Belibassakis",
"givenName": "K. A.",
"id": "sg:person.010422507533.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010422507533.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Technical University of Athens, School of Naval Architecture and Marine Engineering, Athens, Greece",
"id": "http://www.grid.ac/institutes/grid.4241.3",
"name": [
"National Technical University of Athens, School of Naval Architecture and Marine Engineering, Athens, Greece"
],
"type": "Organization"
},
"familyName": "Papoutsellis",
"givenName": "Ch. E.",
"id": "sg:person.014311551453.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311551453.21"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/srep27715",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037143713",
"https://doi.org/10.1038/srep27715"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00913182",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002440524",
"https://doi.org/10.1007/bf00913182"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-08-16",
"datePublishedReg": "2017-08-16",
"description": "A novel, exact, Hamiltonian system of two nonlinear evolution equations, coupled with a time-independent system of horizontal differential equations providing the Dirichlet-to-Neumann operator for any bathymetry, is applied to the study of the evolution of wave trains in finite depth, aiming at the identification of nonlinear high waves in finite depth, and over a sloping bottom. The vertical structure of the wave field is exactly represented up to the instantaneous free surface, by means of an appropriately constructed, rapidly convergent, local vertical series expansion of the wave potential. This Hamiltonian system is used for studying the fully nonlinear refocusing of transient wave groups, obtained by linear backpropagation of high-amplitude wave trains constructed by the theory of quasi-determinism. The results presented give a first quantification of the effects of sloping bottom and of spectral bandwidth on rogue-wave dynamics and kinematics, in finite depth.",
"genre": "article",
"id": "sg:pub.10.1007/s40722-017-0096-4",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136869",
"issn": [
"2198-6444",
"2198-6452"
],
"name": "Journal of Ocean Engineering and Marine Energy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"keywords": [
"Hamiltonian systems",
"finite depth",
"rogue wave dynamics",
"nonlinear evolution equations",
"time-independent systems",
"coupled-mode system",
"high-amplitude wave trains",
"wave train",
"transient wave groups",
"differential equations",
"evolution equations",
"instantaneous free surface",
"series expansion",
"wave field",
"wave groups",
"variable bathymetry",
"Neumann operator",
"design wave",
"equations",
"wave potential",
"sloping bottom",
"free surface",
"high waves",
"waves",
"Dirichlet",
"operators",
"vertical structure",
"theory",
"system",
"train",
"spectral bandwidth",
"dynamics",
"backpropagation",
"bathymetry",
"field",
"kinematics",
"depth",
"bottom",
"bandwidth",
"applications",
"surface",
"expansion",
"evolution",
"structure",
"means",
"refocusing",
"first quantification",
"results",
"potential",
"quantification",
"effect",
"identification",
"study",
"group"
],
"name": "An exact Hamiltonian coupled-mode system with application to extreme design waves over variable bathymetry",
"pagination": "373-383",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1091222354"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40722-017-0096-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40722-017-0096-4",
"https://app.dimensions.ai/details/publication/pub.1091222354"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_749.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40722-017-0096-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40722-017-0096-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40722-017-0096-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40722-017-0096-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40722-017-0096-4'
This table displays all metadata directly associated to this object as RDF triples.
137 TRIPLES
21 PREDICATES
80 URIs
70 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s40722-017-0096-4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nf91c4cd6143440d0ad28bcfbe678ef1d |
4 | ″ | schema:citation | sg:pub.10.1007/bf00913182 |
5 | ″ | ″ | sg:pub.10.1038/srep27715 |
6 | ″ | schema:datePublished | 2017-08-16 |
7 | ″ | schema:datePublishedReg | 2017-08-16 |
8 | ″ | schema:description | A novel, exact, Hamiltonian system of two nonlinear evolution equations, coupled with a time-independent system of horizontal differential equations providing the Dirichlet-to-Neumann operator for any bathymetry, is applied to the study of the evolution of wave trains in finite depth, aiming at the identification of nonlinear high waves in finite depth, and over a sloping bottom. The vertical structure of the wave field is exactly represented up to the instantaneous free surface, by means of an appropriately constructed, rapidly convergent, local vertical series expansion of the wave potential. This Hamiltonian system is used for studying the fully nonlinear refocusing of transient wave groups, obtained by linear backpropagation of high-amplitude wave trains constructed by the theory of quasi-determinism. The results presented give a first quantification of the effects of sloping bottom and of spectral bandwidth on rogue-wave dynamics and kinematics, in finite depth. |
9 | ″ | schema:genre | article |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nb1ffb2b3220145bdb4696f8754a0508b |
12 | ″ | ″ | Nbf66da9d39f643d5ad5dc15f822c2bb9 |
13 | ″ | ″ | sg:journal.1136869 |
14 | ″ | schema:keywords | Dirichlet |
15 | ″ | ″ | Hamiltonian systems |
16 | ″ | ″ | Neumann operator |
17 | ″ | ″ | applications |
18 | ″ | ″ | backpropagation |
19 | ″ | ″ | bandwidth |
20 | ″ | ″ | bathymetry |
21 | ″ | ″ | bottom |
22 | ″ | ″ | coupled-mode system |
23 | ″ | ″ | depth |
24 | ″ | ″ | design wave |
25 | ″ | ″ | differential equations |
26 | ″ | ″ | dynamics |
27 | ″ | ″ | effect |
28 | ″ | ″ | equations |
29 | ″ | ″ | evolution |
30 | ″ | ″ | evolution equations |
31 | ″ | ″ | expansion |
32 | ″ | ″ | field |
33 | ″ | ″ | finite depth |
34 | ″ | ″ | first quantification |
35 | ″ | ″ | free surface |
36 | ″ | ″ | group |
37 | ″ | ″ | high waves |
38 | ″ | ″ | high-amplitude wave trains |
39 | ″ | ″ | identification |
40 | ″ | ″ | instantaneous free surface |
41 | ″ | ″ | kinematics |
42 | ″ | ″ | means |
43 | ″ | ″ | nonlinear evolution equations |
44 | ″ | ″ | operators |
45 | ″ | ″ | potential |
46 | ″ | ″ | quantification |
47 | ″ | ″ | refocusing |
48 | ″ | ″ | results |
49 | ″ | ″ | rogue wave dynamics |
50 | ″ | ″ | series expansion |
51 | ″ | ″ | sloping bottom |
52 | ″ | ″ | spectral bandwidth |
53 | ″ | ″ | structure |
54 | ″ | ″ | study |
55 | ″ | ″ | surface |
56 | ″ | ″ | system |
57 | ″ | ″ | theory |
58 | ″ | ″ | time-independent systems |
59 | ″ | ″ | train |
60 | ″ | ″ | transient wave groups |
61 | ″ | ″ | variable bathymetry |
62 | ″ | ″ | vertical structure |
63 | ″ | ″ | wave field |
64 | ″ | ″ | wave groups |
65 | ″ | ″ | wave potential |
66 | ″ | ″ | wave train |
67 | ″ | ″ | waves |
68 | ″ | schema:name | An exact Hamiltonian coupled-mode system with application to extreme design waves over variable bathymetry |
69 | ″ | schema:pagination | 373-383 |
70 | ″ | schema:productId | N0ececb9fb7324588b1935a6da6dda5ab |
71 | ″ | ″ | N27ac058b796e49f6a01cf07433a91fd7 |
72 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1091222354 |
73 | ″ | ″ | https://doi.org/10.1007/s40722-017-0096-4 |
74 | ″ | schema:sdDatePublished | 2022-08-04T17:04 |
75 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
76 | ″ | schema:sdPublisher | N5bdc8c381c974291b0c0d08e8af4b894 |
77 | ″ | schema:url | https://doi.org/10.1007/s40722-017-0096-4 |
78 | ″ | sgo:license | sg:explorer/license/ |
79 | ″ | sgo:sdDataset | articles |
80 | ″ | rdf:type | schema:ScholarlyArticle |
81 | N0ececb9fb7324588b1935a6da6dda5ab | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1091222354 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | N27ac058b796e49f6a01cf07433a91fd7 | schema:name | doi |
85 | ″ | schema:value | 10.1007/s40722-017-0096-4 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N45b88bd19878438e98416fceb47eae57 | rdf:first | sg:person.010422507533.54 |
88 | ″ | rdf:rest | Naca96b1a1a454b30aab1f6e0b5a807a3 |
89 | N5bdc8c381c974291b0c0d08e8af4b894 | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | Naca96b1a1a454b30aab1f6e0b5a807a3 | rdf:first | sg:person.014311551453.21 |
92 | ″ | rdf:rest | rdf:nil |
93 | Nb1ffb2b3220145bdb4696f8754a0508b | schema:issueNumber | 4 |
94 | ″ | rdf:type | schema:PublicationIssue |
95 | Nbf66da9d39f643d5ad5dc15f822c2bb9 | schema:volumeNumber | 3 |
96 | ″ | rdf:type | schema:PublicationVolume |
97 | Nf91c4cd6143440d0ad28bcfbe678ef1d | rdf:first | sg:person.014012275367.26 |
98 | ″ | rdf:rest | N45b88bd19878438e98416fceb47eae57 |
99 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Mathematical Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Pure Mathematics |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | sg:journal.1136869 | schema:issn | 2198-6444 |
106 | ″ | ″ | 2198-6452 |
107 | ″ | schema:name | Journal of Ocean Engineering and Marine Energy |
108 | ″ | schema:publisher | Springer Nature |
109 | ″ | rdf:type | schema:Periodical |
110 | sg:person.010422507533.54 | schema:affiliation | grid-institutes:grid.4241.3 |
111 | ″ | schema:familyName | Belibassakis |
112 | ″ | schema:givenName | K. A. |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010422507533.54 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.014012275367.26 | schema:affiliation | grid-institutes:grid.35915.3b |
116 | ″ | schema:familyName | Athanassoulis |
117 | ″ | schema:givenName | G. A. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014012275367.26 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.014311551453.21 | schema:affiliation | grid-institutes:grid.4241.3 |
121 | ″ | schema:familyName | Papoutsellis |
122 | ″ | schema:givenName | Ch. E. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311551453.21 |
124 | ″ | rdf:type | schema:Person |
125 | sg:pub.10.1007/bf00913182 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002440524 |
126 | ″ | ″ | https://doi.org/10.1007/bf00913182 |
127 | ″ | rdf:type | schema:CreativeWork |
128 | sg:pub.10.1038/srep27715 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037143713 |
129 | ″ | ″ | https://doi.org/10.1038/srep27715 |
130 | ″ | rdf:type | schema:CreativeWork |
131 | grid-institutes:grid.35915.3b | schema:alternateName | Research Center for High Performance Computing, ITMO University, St. Petersburg, Russia |
132 | ″ | schema:name | National Technical University of Athens, School of Naval Architecture and Marine Engineering, Athens, Greece |
133 | ″ | ″ | Research Center for High Performance Computing, ITMO University, St. Petersburg, Russia |
134 | ″ | rdf:type | schema:Organization |
135 | grid-institutes:grid.4241.3 | schema:alternateName | National Technical University of Athens, School of Naval Architecture and Marine Engineering, Athens, Greece |
136 | ″ | schema:name | National Technical University of Athens, School of Naval Architecture and Marine Engineering, Athens, Greece |
137 | ″ | rdf:type | schema:Organization |