Visual analytics for concept exploration in subspaces of patient groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03-21

AUTHORS

Michael Hund, Dominic Böhm, Werner Sturm, Michael Sedlmair, Tobias Schreck, Torsten Ullrich, Daniel A. Keim, Ljiljana Majnaric, Andreas Holzinger

ABSTRACT

Medical doctors and researchers in bio-medicine are increasingly confronted with complex patient data, posing new and difficult analysis challenges. These data are often comprising high-dimensional descriptions of patient conditions and measurements on the success of certain therapies. An important analysis question in such data is to compare and correlate patient conditions and therapy results along with combinations of dimensions. As the number of dimensions is often very large, one needs to map them to a smaller number of relevant dimensions to be more amenable for expert analysis. This is because irrelevant, redundant, and conflicting dimensions can negatively affect effectiveness and efficiency of the analytic process (the so-called curse of dimensionality). However, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We demonstrate the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we present SubVIS, an interactive tool to visually explore subspace clusters from different perspectives, introduce a novel analysis workflow, and discuss future directions for high-dimensional (medical) data analysis and its visual exploration. We apply the presented workflow to a real-world dataset from the medical domain and show its usefulness with a domain expert evaluation. More... »

PAGES

233-247

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40708-016-0043-5

DOI

http://dx.doi.org/10.1007/s40708-016-0043-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042377549

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27747817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer and Information Science, University of Konstanz, Box 78, 78457, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Department of Computer and Information Science, University of Konstanz, Box 78, 78457, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hund", 
        "givenName": "Michael", 
        "id": "sg:person.012227723565.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227723565.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6hm", 
        "givenName": "Dominic", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sturm", 
        "givenName": "Werner", 
        "id": "sg:person.013622664565.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013622664565.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedlmair", 
        "givenName": "Michael", 
        "id": "sg:person.01274657031.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274657031.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreck", 
        "givenName": "Tobias", 
        "id": "sg:person.01165671765.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165671765.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Frauenhofer Austria Research GmbH, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Frauenhofer Austria Research GmbH, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ullrich", 
        "givenName": "Torsten", 
        "id": "sg:person.012140467125.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140467125.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Medicine, JJ Strossmayer University of Osijek, Osijek, Croatia", 
          "id": "http://www.grid.ac/institutes/grid.412680.9", 
          "name": [
            "Faculty of Medicine, JJ Strossmayer University of Osijek, Osijek, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Majnaric", 
        "givenName": "Ljiljana", 
        "id": "sg:person.0672111600.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672111600.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holzinger", 
        "givenName": "Andreas", 
        "id": "sg:person.015335163460.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015335163460.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-78246-9_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028435572", 
          "https://doi.org/10.1007/978-3-540-78246-9_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25087-8_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009194621", 
          "https://doi.org/10.1007/978-3-319-25087-8_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04528-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045373900", 
          "https://doi.org/10.1007/978-3-319-04528-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71080-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010610169", 
          "https://doi.org/10.1007/978-3-540-71080-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40511-2_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035386974", 
          "https://doi.org/10.1007/978-3-642-40511-2_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-23344-4_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014292595", 
          "https://doi.org/10.1007/978-3-319-23344-4_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49257-7_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014799025", 
          "https://doi.org/10.1007/3-540-49257-7_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-43968-5_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011702215", 
          "https://doi.org/10.1007/978-3-662-43968-5_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-43968-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026886688", 
          "https://doi.org/10.1007/978-3-662-43968-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-09891-3_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002208341", 
          "https://doi.org/10.1007/978-3-319-09891-3_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-s6-i1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027384637", 
          "https://doi.org/10.1186/1471-2105-15-s6-i1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03-21", 
    "datePublishedReg": "2016-03-21", 
    "description": "Medical doctors and researchers in bio-medicine are increasingly confronted with complex patient data, posing new and difficult analysis challenges. These data are often comprising high-dimensional descriptions of patient conditions and measurements on the success of certain therapies. An important analysis question in such data is to compare and correlate patient conditions and therapy results along with combinations of dimensions. As the number of dimensions is often very large, one needs to map them to a smaller number of relevant dimensions to be more amenable for expert analysis. This is because irrelevant, redundant, and conflicting dimensions can negatively affect effectiveness and efficiency of the analytic process (the so-called curse of dimensionality). However, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We demonstrate the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we present SubVIS, an interactive tool to visually explore subspace clusters from different perspectives, introduce a novel analysis workflow, and discuss future directions for high-dimensional (medical) data analysis and its visual exploration. We apply the presented workflow to a real-world dataset from the medical domain and show its usefulness with a domain expert evaluation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40708-016-0043-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052903", 
        "issn": [
          "2198-4018", 
          "2198-4026"
        ], 
        "name": "Brain Informatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "high-dimensional medical data", 
      "real-world datasets", 
      "domain expert evaluation", 
      "complex patient data", 
      "high-dimensional data analysis", 
      "low-dimensional space", 
      "visual analytics", 
      "subspace clusters", 
      "medical domain", 
      "interactive tool", 
      "medical data", 
      "visual exploration", 
      "possible mappings", 
      "analysis workflow", 
      "analysis challenges", 
      "combinations of dimensions", 
      "number of dimensions", 
      "subspace analysis", 
      "concept exploration", 
      "analysis questions", 
      "such data", 
      "expert analysis", 
      "analytic process", 
      "workflow", 
      "patient data", 
      "expert evaluation", 
      "higher-dimensional description", 
      "data analysis", 
      "different perspectives", 
      "analytics", 
      "dataset", 
      "relevant dimensions", 
      "future directions", 
      "small number", 
      "medical doctors", 
      "data", 
      "exploration", 
      "subspace", 
      "tool", 
      "challenges", 
      "effectiveness", 
      "researchers", 
      "patient's condition", 
      "domain", 
      "mapping", 
      "different combinations", 
      "space", 
      "number", 
      "efficiency", 
      "dimensions", 
      "example", 
      "clusters", 
      "usefulness", 
      "similarity", 
      "description", 
      "evaluation", 
      "doctors", 
      "process", 
      "success", 
      "analysis", 
      "combination", 
      "perspective", 
      "results", 
      "direction", 
      "questions", 
      "interpretation", 
      "potential", 
      "conditions", 
      "measurements", 
      "certain therapies", 
      "group", 
      "patient group", 
      "therapy results", 
      "patients", 
      "therapy"
    ], 
    "name": "Visual analytics for concept exploration in subspaces of patient groups", 
    "pagination": "233-247", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042377549"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40708-016-0043-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27747817"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40708-016-0043-5", 
      "https://app.dimensions.ai/details/publication/pub.1042377549"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_692.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40708-016-0043-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40708-016-0043-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40708-016-0043-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40708-016-0043-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40708-016-0043-5'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      111 URIs      92 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40708-016-0043-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne2efb05712154333b26f8038a69e1ad2
4 schema:citation sg:pub.10.1007/3-540-49257-7_15
5 sg:pub.10.1007/978-3-319-04528-3
6 sg:pub.10.1007/978-3-319-09891-3_46
7 sg:pub.10.1007/978-3-319-23344-4_35
8 sg:pub.10.1007/978-3-319-25087-8_29
9 sg:pub.10.1007/978-3-540-71080-6_6
10 sg:pub.10.1007/978-3-540-78246-9_38
11 sg:pub.10.1007/978-3-642-40511-2_22
12 sg:pub.10.1007/978-3-662-43968-5_2
13 sg:pub.10.1007/978-3-662-43968-5_7
14 sg:pub.10.1186/1471-2105-15-s6-i1
15 schema:datePublished 2016-03-21
16 schema:datePublishedReg 2016-03-21
17 schema:description Medical doctors and researchers in bio-medicine are increasingly confronted with complex patient data, posing new and difficult analysis challenges. These data are often comprising high-dimensional descriptions of patient conditions and measurements on the success of certain therapies. An important analysis question in such data is to compare and correlate patient conditions and therapy results along with combinations of dimensions. As the number of dimensions is often very large, one needs to map them to a smaller number of relevant dimensions to be more amenable for expert analysis. This is because irrelevant, redundant, and conflicting dimensions can negatively affect effectiveness and efficiency of the analytic process (the so-called curse of dimensionality). However, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We demonstrate the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we present SubVIS, an interactive tool to visually explore subspace clusters from different perspectives, introduce a novel analysis workflow, and discuss future directions for high-dimensional (medical) data analysis and its visual exploration. We apply the presented workflow to a real-world dataset from the medical domain and show its usefulness with a domain expert evaluation.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N38eabde88c5949d49aeb7dc771ea0042
21 N5a7013b842e440d9b2b9c70aa54379b9
22 sg:journal.1052903
23 schema:keywords analysis
24 analysis challenges
25 analysis questions
26 analysis workflow
27 analytic process
28 analytics
29 certain therapies
30 challenges
31 clusters
32 combination
33 combinations of dimensions
34 complex patient data
35 concept exploration
36 conditions
37 data
38 data analysis
39 dataset
40 description
41 different combinations
42 different perspectives
43 dimensions
44 direction
45 doctors
46 domain
47 domain expert evaluation
48 effectiveness
49 efficiency
50 evaluation
51 example
52 expert analysis
53 expert evaluation
54 exploration
55 future directions
56 group
57 high-dimensional data analysis
58 high-dimensional medical data
59 higher-dimensional description
60 interactive tool
61 interpretation
62 low-dimensional space
63 mapping
64 measurements
65 medical data
66 medical doctors
67 medical domain
68 number
69 number of dimensions
70 patient data
71 patient group
72 patient's condition
73 patients
74 perspective
75 possible mappings
76 potential
77 process
78 questions
79 real-world datasets
80 relevant dimensions
81 researchers
82 results
83 similarity
84 small number
85 space
86 subspace
87 subspace analysis
88 subspace clusters
89 success
90 such data
91 therapy
92 therapy results
93 tool
94 usefulness
95 visual analytics
96 visual exploration
97 workflow
98 schema:name Visual analytics for concept exploration in subspaces of patient groups
99 schema:pagination 233-247
100 schema:productId N0ca65adc672d44058ef6443c8ab18329
101 Ncf8f3ae881f34eeda89be79f555b1012
102 Nefbaa47fd3b24e8f8204cc371cedf71a
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042377549
104 https://doi.org/10.1007/s40708-016-0043-5
105 schema:sdDatePublished 2022-11-24T20:59
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher Nee1e46196ce747c3b6a286b23b259cf8
108 schema:url https://doi.org/10.1007/s40708-016-0043-5
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N0ca65adc672d44058ef6443c8ab18329 schema:name pubmed_id
113 schema:value 27747817
114 rdf:type schema:PropertyValue
115 N303fe440e1374cffaecfb7661ca69115 rdf:first sg:person.013622664565.40
116 rdf:rest Nf10028ef9a274420938eebd187a84e94
117 N38eabde88c5949d49aeb7dc771ea0042 schema:volumeNumber 3
118 rdf:type schema:PublicationVolume
119 N3a60ac0b946d4f70a1a73f728856e085 schema:affiliation grid-institutes:grid.10420.37
120 schema:familyName Böhm
121 schema:givenName Dominic
122 rdf:type schema:Person
123 N3a734b95efd84b45914bb1c735fa2248 rdf:first sg:person.0672111600.50
124 rdf:rest Nb2918c07818342589d87f5fe737b0329
125 N5a7013b842e440d9b2b9c70aa54379b9 schema:issueNumber 4
126 rdf:type schema:PublicationIssue
127 N77370f2b3e83416eaed62a56161f0993 rdf:first N3a60ac0b946d4f70a1a73f728856e085
128 rdf:rest N303fe440e1374cffaecfb7661ca69115
129 Na80007517b654e58a61ed610a7d2b063 rdf:first sg:person.0635776571.01
130 rdf:rest N3a734b95efd84b45914bb1c735fa2248
131 Nb2918c07818342589d87f5fe737b0329 rdf:first sg:person.015335163460.76
132 rdf:rest rdf:nil
133 Ncf8f3ae881f34eeda89be79f555b1012 schema:name dimensions_id
134 schema:value pub.1042377549
135 rdf:type schema:PropertyValue
136 Nd117a79bbeda4d4b98939a079e533992 rdf:first sg:person.01165671765.01
137 rdf:rest Ne824db0454a9478e9353413d3a7b79a8
138 Ne2efb05712154333b26f8038a69e1ad2 rdf:first sg:person.012227723565.37
139 rdf:rest N77370f2b3e83416eaed62a56161f0993
140 Ne824db0454a9478e9353413d3a7b79a8 rdf:first sg:person.012140467125.76
141 rdf:rest Na80007517b654e58a61ed610a7d2b063
142 Nee1e46196ce747c3b6a286b23b259cf8 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nefbaa47fd3b24e8f8204cc371cedf71a schema:name doi
145 schema:value 10.1007/s40708-016-0043-5
146 rdf:type schema:PropertyValue
147 Nf10028ef9a274420938eebd187a84e94 rdf:first sg:person.01274657031.24
148 rdf:rest Nd117a79bbeda4d4b98939a079e533992
149 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
150 schema:name Information and Computing Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
153 schema:name Artificial Intelligence and Image Processing
154 rdf:type schema:DefinedTerm
155 sg:journal.1052903 schema:issn 2198-4018
156 2198-4026
157 schema:name Brain Informatics
158 schema:publisher Springer Nature
159 rdf:type schema:Periodical
160 sg:person.01165671765.01 schema:affiliation grid-institutes:grid.410413.3
161 schema:familyName Schreck
162 schema:givenName Tobias
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165671765.01
164 rdf:type schema:Person
165 sg:person.012140467125.76 schema:affiliation grid-institutes:None
166 schema:familyName Ullrich
167 schema:givenName Torsten
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140467125.76
169 rdf:type schema:Person
170 sg:person.012227723565.37 schema:affiliation grid-institutes:grid.9811.1
171 schema:familyName Hund
172 schema:givenName Michael
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227723565.37
174 rdf:type schema:Person
175 sg:person.01274657031.24 schema:affiliation grid-institutes:grid.10420.37
176 schema:familyName Sedlmair
177 schema:givenName Michael
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274657031.24
179 rdf:type schema:Person
180 sg:person.013622664565.40 schema:affiliation grid-institutes:grid.410413.3
181 schema:familyName Sturm
182 schema:givenName Werner
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013622664565.40
184 rdf:type schema:Person
185 sg:person.015335163460.76 schema:affiliation grid-institutes:grid.11598.34
186 schema:familyName Holzinger
187 schema:givenName Andreas
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015335163460.76
189 rdf:type schema:Person
190 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
191 schema:familyName Keim
192 schema:givenName Daniel A.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
194 rdf:type schema:Person
195 sg:person.0672111600.50 schema:affiliation grid-institutes:grid.412680.9
196 schema:familyName Majnaric
197 schema:givenName Ljiljana
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672111600.50
199 rdf:type schema:Person
200 sg:pub.10.1007/3-540-49257-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014799025
201 https://doi.org/10.1007/3-540-49257-7_15
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/978-3-319-04528-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045373900
204 https://doi.org/10.1007/978-3-319-04528-3
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/978-3-319-09891-3_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002208341
207 https://doi.org/10.1007/978-3-319-09891-3_46
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/978-3-319-23344-4_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014292595
210 https://doi.org/10.1007/978-3-319-23344-4_35
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/978-3-319-25087-8_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009194621
213 https://doi.org/10.1007/978-3-319-25087-8_29
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/978-3-540-71080-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010610169
216 https://doi.org/10.1007/978-3-540-71080-6_6
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/978-3-540-78246-9_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028435572
219 https://doi.org/10.1007/978-3-540-78246-9_38
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/978-3-642-40511-2_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035386974
222 https://doi.org/10.1007/978-3-642-40511-2_22
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/978-3-662-43968-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026886688
225 https://doi.org/10.1007/978-3-662-43968-5_2
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/978-3-662-43968-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011702215
228 https://doi.org/10.1007/978-3-662-43968-5_7
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/1471-2105-15-s6-i1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027384637
231 https://doi.org/10.1186/1471-2105-15-s6-i1
232 rdf:type schema:CreativeWork
233 grid-institutes:None schema:alternateName Frauenhofer Austria Research GmbH, Graz, Austria
234 schema:name Frauenhofer Austria Research GmbH, Graz, Austria
235 rdf:type schema:Organization
236 grid-institutes:grid.10420.37 schema:alternateName University of Vienna, Vienna, Austria
237 schema:name University of Vienna, Vienna, Austria
238 rdf:type schema:Organization
239 grid-institutes:grid.11598.34 schema:alternateName Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
240 schema:name Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
241 rdf:type schema:Organization
242 grid-institutes:grid.410413.3 schema:alternateName Graz University of Technology, Graz, Austria
243 schema:name Graz University of Technology, Graz, Austria
244 rdf:type schema:Organization
245 grid-institutes:grid.412680.9 schema:alternateName Faculty of Medicine, JJ Strossmayer University of Osijek, Osijek, Croatia
246 schema:name Faculty of Medicine, JJ Strossmayer University of Osijek, Osijek, Croatia
247 rdf:type schema:Organization
248 grid-institutes:grid.9811.1 schema:alternateName Department of Computer and Information Science, University of Konstanz, Box 78, 78457, Konstanz, Germany
249 University of Konstanz, Konstanz, Germany
250 schema:name Department of Computer and Information Science, University of Konstanz, Box 78, 78457, Konstanz, Germany
251 University of Konstanz, Konstanz, Germany
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...