Universal mock theta functions as quantum Jacobi forms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Greg Carroll, James Corbett, Amanda Folsom, Ellie Thieu

ABSTRACT

Quantum Jacobi forms were defined in 2016, naturally combining Zagier’s definition of a quantum modular form with that of a Jacobi form. To date, just three examples of such functions exist in the literature. Here, we prove that the universal mock theta function g2, as well as the universal mock theta functions K,K1,K2, and κ, gives rise to an infinite family of quantum Jacobi forms Ga,b(z;τ) of weight 1 / 2 in dense subsets Qa,b⊆Q×Q. We then use these quantum Jacobi transformation properties to establish polynomial expressions for Ga,b at pairs of rational numbers, as well as simple closed-form expressions for sums of Mordell integrals. More... »

PAGES

6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40687-018-0169-6

DOI

http://dx.doi.org/10.1007/s40687-018-0169-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110203755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Amherst College", 
          "id": "https://www.grid.ac/institutes/grid.252152.3", 
          "name": [
            "Department of Mathematics and Statistics, Amherst College, Seeley Mudd Building, 31 Quadrangle Dr., 01002, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carroll", 
        "givenName": "Greg", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amherst College", 
          "id": "https://www.grid.ac/institutes/grid.252152.3", 
          "name": [
            "Department of Mathematics and Statistics, Amherst College, Seeley Mudd Building, 31 Quadrangle Dr., 01002, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corbett", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amherst College", 
          "id": "https://www.grid.ac/institutes/grid.252152.3", 
          "name": [
            "Department of Mathematics and Statistics, Amherst College, Seeley Mudd Building, 31 Quadrangle Dr., 01002, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Folsom", 
        "givenName": "Amanda", 
        "id": "sg:person.014433460651.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014433460651.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amherst College", 
          "id": "https://www.grid.ac/institutes/grid.252152.3", 
          "name": [
            "Department of Mathematics and Statistics, Amherst College, Seeley Mudd Building, 31 Quadrangle Dr., 01002, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thieu", 
        "givenName": "Ellie", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02547795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001772136", 
          "https://doi.org/10.1007/bf02547795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1211964109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006032155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-0028-8_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007776519", 
          "https://doi.org/10.1007/978-1-4614-0028-8_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40687-015-0035-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008759974", 
          "https://doi.org/10.1186/s40687-015-0035-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40687-015-0035-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008759974", 
          "https://doi.org/10.1186/s40687-015-0035-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-012-9370-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012491271", 
          "https://doi.org/10.1007/s11139-012-9370-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00013-016-0941-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013463456", 
          "https://doi.org/10.1007/s00013-016-0941-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00013-016-0941-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013463456", 
          "https://doi.org/10.1007/s00013-016-0941-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00026-005-0260-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015467783", 
          "https://doi.org/10.1007/s00026-005-0260-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021753506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021753506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024495704", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495704", 
          "https://doi.org/10.1007/978-1-4684-9162-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495704", 
          "https://doi.org/10.1007/978-1-4684-9162-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x09004072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048913030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x09004072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048913030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-80615-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049342383", 
          "https://doi.org/10.1007/978-3-642-80615-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-80615-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049342383", 
          "https://doi.org/10.1007/978-3-642-80615-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40993-016-0045-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049642383", 
          "https://doi.org/10.1007/s40993-016-0045-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40993-016-0045-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049642383", 
          "https://doi.org/10.1007/s40993-016-0045-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/fmp.2013.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053147108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/proc/12907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059345240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/proc/13027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059345358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/proc/13065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059345396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x09004060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062054680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x09004060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062054680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-2011-066-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072268833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2017.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092831032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/coll/064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103642916"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Quantum Jacobi forms were defined in 2016, naturally combining Zagier\u2019s definition of a quantum modular form with that of a Jacobi form. To date, just three examples of such functions exist in the literature. Here, we prove that the universal mock theta function g2, as well as the universal mock theta functions K,K1,K2, and \u03ba, gives rise to an infinite family of quantum Jacobi forms Ga,b(z;\u03c4) of weight 1 / 2 in dense subsets Qa,b\u2286Q\u00d7Q. We then use these quantum Jacobi transformation properties to establish polynomial expressions for Ga,b at pairs of rational numbers, as well as simple closed-form expressions for sums of Mordell integrals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40687-018-0169-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3851835", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1279251", 
        "issn": [
          "2522-0144", 
          "2197-9847"
        ], 
        "name": "Research in the Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Universal mock theta functions as quantum Jacobi forms", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9994a4a4f7e1a03d2875ac8c4776a8fcef29f8ba0192ae147718566f1f6eec77"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40687-018-0169-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110203755"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40687-018-0169-6", 
      "https://app.dimensions.ai/details/publication/pub.1110203755"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64106_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40687-018-0169-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40687-018-0169-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40687-018-0169-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40687-018-0169-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40687-018-0169-6'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40687-018-0169-6 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N7b2336dbb6c24733b2b67853dffbc2ee
4 schema:citation sg:pub.10.1007/978-1-4614-0028-8_9
5 sg:pub.10.1007/978-1-4684-9162-3
6 sg:pub.10.1007/978-3-642-80615-5
7 sg:pub.10.1007/bf02547795
8 sg:pub.10.1007/s00013-016-0941-z
9 sg:pub.10.1007/s00026-005-0260-8
10 sg:pub.10.1007/s11139-012-9370-1
11 sg:pub.10.1007/s40993-016-0045-7
12 sg:pub.10.1186/s40687-015-0035-8
13 https://app.dimensions.ai/details/publication/pub.1024495704
14 https://doi.org/10.1016/j.jnt.2016.06.005
15 https://doi.org/10.1016/j.jnt.2017.10.022
16 https://doi.org/10.1017/fmp.2013.3
17 https://doi.org/10.1073/pnas.1211964109
18 https://doi.org/10.1090/coll/064
19 https://doi.org/10.1090/proc/12907
20 https://doi.org/10.1090/proc/13027
21 https://doi.org/10.1090/proc/13065
22 https://doi.org/10.1112/s0010437x09004060
23 https://doi.org/10.1112/s0010437x09004072
24 https://doi.org/10.4153/cjm-2011-066-0
25 schema:datePublished 2019-03
26 schema:datePublishedReg 2019-03-01
27 schema:description Quantum Jacobi forms were defined in 2016, naturally combining Zagier’s definition of a quantum modular form with that of a Jacobi form. To date, just three examples of such functions exist in the literature. Here, we prove that the universal mock theta function g2, as well as the universal mock theta functions K,K1,K2, and κ, gives rise to an infinite family of quantum Jacobi forms Ga,b(z;τ) of weight 1 / 2 in dense subsets Qa,b⊆Q×Q. We then use these quantum Jacobi transformation properties to establish polynomial expressions for Ga,b at pairs of rational numbers, as well as simple closed-form expressions for sums of Mordell integrals.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N28f985a00a794e3cb6ea78da2afb5ef3
32 N4dde4748c5bd4bf7a2e6298d2dfb1bd7
33 sg:journal.1279251
34 schema:name Universal mock theta functions as quantum Jacobi forms
35 schema:pagination 6
36 schema:productId N13059db2dac04bcc84819ae9e18fb687
37 N4d8abb2a444f499db408fd69eccfe412
38 Ne58a84ca814c4eb1b6372f03f6d4578e
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110203755
40 https://doi.org/10.1007/s40687-018-0169-6
41 schema:sdDatePublished 2019-04-11T09:25
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N8f65d6ce7d86460f8a2d8485c73a18ce
44 schema:url https://link.springer.com/10.1007%2Fs40687-018-0169-6
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N13059db2dac04bcc84819ae9e18fb687 schema:name dimensions_id
49 schema:value pub.1110203755
50 rdf:type schema:PropertyValue
51 N28f985a00a794e3cb6ea78da2afb5ef3 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N2a8cd4610dc8406084b406ec1dbef741 rdf:first sg:person.014433460651.03
54 rdf:rest N6a323f6627ad4fdb811badca8d584fcc
55 N3279611a384648188dfba286ddd70d00 schema:affiliation https://www.grid.ac/institutes/grid.252152.3
56 schema:familyName Thieu
57 schema:givenName Ellie
58 rdf:type schema:Person
59 N4d8abb2a444f499db408fd69eccfe412 schema:name readcube_id
60 schema:value 9994a4a4f7e1a03d2875ac8c4776a8fcef29f8ba0192ae147718566f1f6eec77
61 rdf:type schema:PropertyValue
62 N4dde4748c5bd4bf7a2e6298d2dfb1bd7 schema:volumeNumber 6
63 rdf:type schema:PublicationVolume
64 N6a323f6627ad4fdb811badca8d584fcc rdf:first N3279611a384648188dfba286ddd70d00
65 rdf:rest rdf:nil
66 N7b2336dbb6c24733b2b67853dffbc2ee rdf:first Nb1a972f2211f48e4bf626a94dc4d8309
67 rdf:rest Nbbee5eb08ea8440684135d3545be73f9
68 N8f65d6ce7d86460f8a2d8485c73a18ce schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb1a972f2211f48e4bf626a94dc4d8309 schema:affiliation https://www.grid.ac/institutes/grid.252152.3
71 schema:familyName Carroll
72 schema:givenName Greg
73 rdf:type schema:Person
74 Nbbee5eb08ea8440684135d3545be73f9 rdf:first Nc88ca27d217641e5ba424b2ff0d08b98
75 rdf:rest N2a8cd4610dc8406084b406ec1dbef741
76 Nc88ca27d217641e5ba424b2ff0d08b98 schema:affiliation https://www.grid.ac/institutes/grid.252152.3
77 schema:familyName Corbett
78 schema:givenName James
79 rdf:type schema:Person
80 Ne58a84ca814c4eb1b6372f03f6d4578e schema:name doi
81 schema:value 10.1007/s40687-018-0169-6
82 rdf:type schema:PropertyValue
83 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
87 schema:name Quantum Physics
88 rdf:type schema:DefinedTerm
89 sg:grant.3851835 http://pending.schema.org/fundedItem sg:pub.10.1007/s40687-018-0169-6
90 rdf:type schema:MonetaryGrant
91 sg:journal.1279251 schema:issn 2197-9847
92 2522-0144
93 schema:name Research in the Mathematical Sciences
94 rdf:type schema:Periodical
95 sg:person.014433460651.03 schema:affiliation https://www.grid.ac/institutes/grid.252152.3
96 schema:familyName Folsom
97 schema:givenName Amanda
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014433460651.03
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4614-0028-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007776519
101 https://doi.org/10.1007/978-1-4614-0028-8_9
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-1-4684-9162-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495704
104 https://doi.org/10.1007/978-1-4684-9162-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-642-80615-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049342383
107 https://doi.org/10.1007/978-3-642-80615-5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02547795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001772136
110 https://doi.org/10.1007/bf02547795
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00013-016-0941-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013463456
113 https://doi.org/10.1007/s00013-016-0941-z
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00026-005-0260-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015467783
116 https://doi.org/10.1007/s00026-005-0260-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11139-012-9370-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012491271
119 https://doi.org/10.1007/s11139-012-9370-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s40993-016-0045-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049642383
122 https://doi.org/10.1007/s40993-016-0045-7
123 rdf:type schema:CreativeWork
124 sg:pub.10.1186/s40687-015-0035-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008759974
125 https://doi.org/10.1186/s40687-015-0035-8
126 rdf:type schema:CreativeWork
127 https://app.dimensions.ai/details/publication/pub.1024495704 schema:CreativeWork
128 https://doi.org/10.1016/j.jnt.2016.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021753506
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jnt.2017.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092831032
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/fmp.2013.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053147108
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1073/pnas.1211964109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006032155
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1090/coll/064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103642916
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1090/proc/12907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059345240
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1090/proc/13027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059345358
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1090/proc/13065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059345396
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1112/s0010437x09004060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062054680
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1112/s0010437x09004072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048913030
147 rdf:type schema:CreativeWork
148 https://doi.org/10.4153/cjm-2011-066-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072268833
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.252152.3 schema:alternateName Amherst College
151 schema:name Department of Mathematics and Statistics, Amherst College, Seeley Mudd Building, 31 Quadrangle Dr., 01002, Amherst, MA, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...