Life Prediction Method for Thermal Barrier Coating of High-Efficiency Eco-Friendly Combined Cycle Power Plant View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hyunwoo Song, Jeong-Min Lee, Yongseok Kim, Sungho Yang, Soo Park, Jae-Mean Koo, Chang-Sung Seok

ABSTRACT

Recently, because global warming has become increasingly severe, CO2 emission regulations have become strict. Accordingly, there is an increasing demand for a combined cycle power plant that is eco-friendly and capable of high-efficiency generation using natural gas, which has a relatively low carbon content. In order to improve the efficiency of a combined cycle power plant by increasing the operating temperature, the durability of the hot-section components must be secured. Therefore, thermal barrier coating (TBC) technology has been applied. The TBC is damaged by thermal fatigue during operation. The delamination of the TBC could lead to core component damage. Therefore, studies on the prediction of TBC durability should be conducted before increasing the operating temperature. In particular, because the thermal fatigue life is affected by changes in the TBC structure, there is a demand for a durability evaluation technique that takes this into consideration. In this study, a thermal fatigue analysis was performed that considered the growth of the oxide layer, and a thermal fatigue life prediction equation for the TBC was derived based on the results. The thermal fatigue life was predicted, according to the change in the TBC structure, using the life prediction equation, and it was verified by comparing it with the thermal fatigue test results. More... »

PAGES

329-337

References to SciGraph publications

  • 2015-01. Application of data quality indicator of carbon footprint and water footprint in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY
  • 2015-12. Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM in FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING
  • 2015-04. A methodology for customized prediction of energy consumption in manufacturing industries in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY
  • 2017-01. TBC delamination life prediction by stress-based delamination map in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY
  • 2012-09. Integrity evaluation of coatings for refreshing cycles extension of the 1st stage bucket on gas turbine in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2018-04. Life Prediction of IN738LC Considering Creep Damage under Low Cycle Fatigue in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY
  • 2016-02. Life prediction of thermal barrier coating considering degradation and thermal fatigue in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2012-05. Failure analysis of the defect-induced blade damage of a compressor in the gas turbine of a cogeneration plant in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2015-01. Product low-carbon design using dynamic programming algorithm in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40684-019-00066-9

    DOI

    http://dx.doi.org/10.1007/s40684-019-00066-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112435467


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sungkyunkwan University", 
              "id": "https://www.grid.ac/institutes/grid.264381.a", 
              "name": [
                "Department of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, 16419, Suwon-si, Gyeonggi-do, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Hyunwoo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sungkyunkwan University", 
              "id": "https://www.grid.ac/institutes/grid.264381.a", 
              "name": [
                "Department of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, 16419, Suwon-si, Gyeonggi-do, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Jeong-Min", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea Railroad Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.464614.5", 
              "name": [
                "Railroad Type Approval Team, Korea Railroad Research Institute, 176, Cheoldobangmulgwan-ro, 16105, Uiwang-si, Gyeonggi-do, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Yongseok", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Technology Team, KPS Gas Turbine Technology Service Center, 57, Jangdo-ro, Seo-gu, 22756, Incheon, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Sungho", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sungkyunkwan University", 
              "id": "https://www.grid.ac/institutes/grid.264381.a", 
              "name": [
                "Department of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, 16419, Suwon-si, Gyeonggi-do, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Soo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sungkyunkwan University", 
              "id": "https://www.grid.ac/institutes/grid.264381.a", 
              "name": [
                "Department of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, 16419, Suwon-si, Gyeonggi-do, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koo", 
            "givenName": "Jae-Mean", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sungkyunkwan University", 
              "id": "https://www.grid.ac/institutes/grid.264381.a", 
              "name": [
                "Department of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, 16419, Suwon-si, Gyeonggi-do, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seok", 
            "givenName": "Chang-Sung", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.actamat.2009.02.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005084649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs.2012.232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005219316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2015.11.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006722217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-012-0205-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007477560", 
              "https://doi.org/10.1007/s12541-012-0205-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40684-015-0006-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012908614", 
              "https://doi.org/10.1007/s40684-015-0006-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.finel.2005.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013937063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.finel.2005.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013937063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2009.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016615555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-016-0031-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018151756", 
              "https://doi.org/10.1007/s12541-016-0031-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40684-015-0005-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019603298", 
              "https://doi.org/10.1007/s40684-015-0005-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygcen.2013.02.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020821275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeurceramsoc.2015.12.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021604277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(02)00743-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021980227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(02)00743-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021980227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.earscirev.2016.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022075564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.earscirev.2016.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022075564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.earscirev.2016.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022075564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.earscirev.2016.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022075564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2010.08.130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024601801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7736/kspe.2014.31.12.1155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029656880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2011.05.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032007308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-6454(03)00046-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035968480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-6454(03)00046-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035968480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2004.05.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036149381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeem.2016.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037443208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-012-0093-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039291156", 
              "https://doi.org/10.1007/s12541-012-0093-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2011.02.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042291457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2012.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042830645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11709-015-0304-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042875585", 
              "https://doi.org/10.1007/s11709-015-0304-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3795/ksme-a.2009.33.2.162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043732776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7736/kspe.2014.31.1.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051901442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40684-015-0021-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051934524", 
              "https://doi.org/10.1007/s40684-015-0021-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2013.04.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053694189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amm.598.276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071974330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aasci.2017.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083750158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40684-017-0009-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083867684", 
              "https://doi.org/10.1007/s40684-017-0009-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40684-017-0009-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083867684", 
              "https://doi.org/10.1007/s40684-017-0009-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2018.03.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101390216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40684-018-0033-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103485911", 
              "https://doi.org/10.1007/s40684-018-0033-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40684-018-0033-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103485911", 
              "https://doi.org/10.1007/s40684-018-0033-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Recently, because global warming has become increasingly severe, CO2 emission regulations have become strict. Accordingly, there is an increasing demand for a combined cycle power plant that is eco-friendly and capable of high-efficiency generation using natural gas, which has a relatively low carbon content. In order to improve the efficiency of a combined cycle power plant by increasing the operating temperature, the durability of the hot-section components must be secured. Therefore, thermal barrier coating (TBC) technology has been applied. The TBC is damaged by thermal fatigue during operation. The delamination of the TBC could lead to core component damage. Therefore, studies on the prediction of TBC durability should be conducted before increasing the operating temperature. In particular, because the thermal fatigue life is affected by changes in the TBC structure, there is a demand for a durability evaluation technique that takes this into consideration. In this study, a thermal fatigue analysis was performed that considered the growth of the oxide layer, and a thermal fatigue life prediction equation for the TBC was derived based on the results. The thermal fatigue life was predicted, according to the change in the TBC structure, using the life prediction equation, and it was verified by comparing it with the thermal fatigue test results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40684-019-00066-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7497446", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136729", 
            "issn": [
              "2288-6206", 
              "2198-0810"
            ], 
            "name": "International Journal of Precision Engineering and Manufacturing-Green Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Life Prediction Method for Thermal Barrier Coating of High-Efficiency Eco-Friendly Combined Cycle Power Plant", 
        "pagination": "329-337", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "46d01008527a99334489e9be51cd764981310035b9d7ec99b2141b8a180f8540"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40684-019-00066-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112435467"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40684-019-00066-9", 
          "https://app.dimensions.ai/details/publication/pub.1112435467"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40684-019-00066-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40684-019-00066-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40684-019-00066-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40684-019-00066-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40684-019-00066-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    208 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40684-019-00066-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ne5e711346fe740ecbf0bc5f16e9ad784
    4 schema:citation sg:pub.10.1007/s11709-015-0304-z
    5 sg:pub.10.1007/s12541-012-0093-4
    6 sg:pub.10.1007/s12541-012-0205-1
    7 sg:pub.10.1007/s12541-016-0031-y
    8 sg:pub.10.1007/s40684-015-0005-z
    9 sg:pub.10.1007/s40684-015-0006-y
    10 sg:pub.10.1007/s40684-015-0021-z
    11 sg:pub.10.1007/s40684-017-0009-y
    12 sg:pub.10.1007/s40684-018-0033-6
    13 https://doi.org/10.1016/j.aasci.2017.02.001
    14 https://doi.org/10.1016/j.actamat.2009.02.047
    15 https://doi.org/10.1016/j.commatsci.2013.04.028
    16 https://doi.org/10.1016/j.earscirev.2016.06.006
    17 https://doi.org/10.1016/j.engfailanal.2012.07.005
    18 https://doi.org/10.1016/j.finel.2005.02.002
    19 https://doi.org/10.1016/j.jeem.2016.11.003
    20 https://doi.org/10.1016/j.jeurceramsoc.2015.12.038
    21 https://doi.org/10.1016/j.matdes.2009.08.005
    22 https://doi.org/10.1016/j.matdes.2018.03.019
    23 https://doi.org/10.1016/j.msea.2004.05.039
    24 https://doi.org/10.1016/j.surfcoat.2010.08.130
    25 https://doi.org/10.1016/j.surfcoat.2011.02.068
    26 https://doi.org/10.1016/j.surfcoat.2011.05.025
    27 https://doi.org/10.1016/j.surfcoat.2015.11.036
    28 https://doi.org/10.1016/j.ygcen.2013.02.034
    29 https://doi.org/10.1016/s0257-8972(02)00743-0
    30 https://doi.org/10.1016/s1359-6454(03)00046-6
    31 https://doi.org/10.1557/mrs.2012.232
    32 https://doi.org/10.3795/ksme-a.2009.33.2.162
    33 https://doi.org/10.4028/www.scientific.net/amm.598.276
    34 https://doi.org/10.7736/kspe.2014.31.1.15
    35 https://doi.org/10.7736/kspe.2014.31.12.1155
    36 schema:datePublished 2019-04
    37 schema:datePublishedReg 2019-04-01
    38 schema:description Recently, because global warming has become increasingly severe, CO2 emission regulations have become strict. Accordingly, there is an increasing demand for a combined cycle power plant that is eco-friendly and capable of high-efficiency generation using natural gas, which has a relatively low carbon content. In order to improve the efficiency of a combined cycle power plant by increasing the operating temperature, the durability of the hot-section components must be secured. Therefore, thermal barrier coating (TBC) technology has been applied. The TBC is damaged by thermal fatigue during operation. The delamination of the TBC could lead to core component damage. Therefore, studies on the prediction of TBC durability should be conducted before increasing the operating temperature. In particular, because the thermal fatigue life is affected by changes in the TBC structure, there is a demand for a durability evaluation technique that takes this into consideration. In this study, a thermal fatigue analysis was performed that considered the growth of the oxide layer, and a thermal fatigue life prediction equation for the TBC was derived based on the results. The thermal fatigue life was predicted, according to the change in the TBC structure, using the life prediction equation, and it was verified by comparing it with the thermal fatigue test results.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N1a58788f99554111821980e2073e5939
    43 N903bed687b714e17952e76fc3e7f2032
    44 sg:journal.1136729
    45 schema:name Life Prediction Method for Thermal Barrier Coating of High-Efficiency Eco-Friendly Combined Cycle Power Plant
    46 schema:pagination 329-337
    47 schema:productId N3c5e9832ef79441fac1813cf8a6f4904
    48 N45c78757422f491cbceacbe4c46e4760
    49 N63dfea6eb3514dc68527a187ecfeb11d
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112435467
    51 https://doi.org/10.1007/s40684-019-00066-9
    52 schema:sdDatePublished 2019-04-11T13:51
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Nc4fee702f5a74007929c1c509aa10936
    55 schema:url https://link.springer.com/10.1007%2Fs40684-019-00066-9
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N1a58788f99554111821980e2073e5939 schema:issueNumber 2
    60 rdf:type schema:PublicationIssue
    61 N3c5e9832ef79441fac1813cf8a6f4904 schema:name readcube_id
    62 schema:value 46d01008527a99334489e9be51cd764981310035b9d7ec99b2141b8a180f8540
    63 rdf:type schema:PropertyValue
    64 N45c78757422f491cbceacbe4c46e4760 schema:name dimensions_id
    65 schema:value pub.1112435467
    66 rdf:type schema:PropertyValue
    67 N52ccef38583d42039deb1ffd3d37e519 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
    68 schema:familyName Koo
    69 schema:givenName Jae-Mean
    70 rdf:type schema:Person
    71 N553373684b2946db9e2a68b6ca946aff rdf:first Nbe96d19a4ed742cf860a42b01dc24cfd
    72 rdf:rest rdf:nil
    73 N63dfea6eb3514dc68527a187ecfeb11d schema:name doi
    74 schema:value 10.1007/s40684-019-00066-9
    75 rdf:type schema:PropertyValue
    76 N71b9aefcac0e445b8ce3303f8a829540 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
    77 schema:familyName Park
    78 schema:givenName Soo
    79 rdf:type schema:Person
    80 N789d40b20d2245b2a3805fe40121c9f3 schema:name Technology Team, KPS Gas Turbine Technology Service Center, 57, Jangdo-ro, Seo-gu, 22756, Incheon, South Korea
    81 rdf:type schema:Organization
    82 N8daf0442700848dc86f1167d06e30687 rdf:first Nefb1bcb96f8740549edbb1c6ac112863
    83 rdf:rest Ndf554f7730ca43d793d8fdbb1e0047a5
    84 N903bed687b714e17952e76fc3e7f2032 schema:volumeNumber 6
    85 rdf:type schema:PublicationVolume
    86 Nabf33b6ea78a4fd9ac01533828728620 rdf:first Nea0c79847fa34574939d0817bc51a6d0
    87 rdf:rest Nc51d50d9b8b249b19a10d30ab583d089
    88 Nbe96d19a4ed742cf860a42b01dc24cfd schema:affiliation https://www.grid.ac/institutes/grid.264381.a
    89 schema:familyName Seok
    90 schema:givenName Chang-Sung
    91 rdf:type schema:Person
    92 Nc4fee702f5a74007929c1c509aa10936 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Nc51d50d9b8b249b19a10d30ab583d089 rdf:first N71b9aefcac0e445b8ce3303f8a829540
    95 rdf:rest Ne7ade19409ad4c399a18aeacb80ef080
    96 Ncaa0a9f2fb404b0c94dc5059b9ca811b schema:affiliation https://www.grid.ac/institutes/grid.464614.5
    97 schema:familyName Kim
    98 schema:givenName Yongseok
    99 rdf:type schema:Person
    100 Nd37ebd87af88428c971cba4016464e65 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
    101 schema:familyName Song
    102 schema:givenName Hyunwoo
    103 rdf:type schema:Person
    104 Ndf554f7730ca43d793d8fdbb1e0047a5 rdf:first Ncaa0a9f2fb404b0c94dc5059b9ca811b
    105 rdf:rest Nabf33b6ea78a4fd9ac01533828728620
    106 Ne5e711346fe740ecbf0bc5f16e9ad784 rdf:first Nd37ebd87af88428c971cba4016464e65
    107 rdf:rest N8daf0442700848dc86f1167d06e30687
    108 Ne7ade19409ad4c399a18aeacb80ef080 rdf:first N52ccef38583d42039deb1ffd3d37e519
    109 rdf:rest N553373684b2946db9e2a68b6ca946aff
    110 Nea0c79847fa34574939d0817bc51a6d0 schema:affiliation N789d40b20d2245b2a3805fe40121c9f3
    111 schema:familyName Yang
    112 schema:givenName Sungho
    113 rdf:type schema:Person
    114 Nefb1bcb96f8740549edbb1c6ac112863 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
    115 schema:familyName Lee
    116 schema:givenName Jeong-Min
    117 rdf:type schema:Person
    118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Engineering
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Materials Engineering
    123 rdf:type schema:DefinedTerm
    124 sg:grant.7497446 http://pending.schema.org/fundedItem sg:pub.10.1007/s40684-019-00066-9
    125 rdf:type schema:MonetaryGrant
    126 sg:journal.1136729 schema:issn 2198-0810
    127 2288-6206
    128 schema:name International Journal of Precision Engineering and Manufacturing-Green Technology
    129 rdf:type schema:Periodical
    130 sg:pub.10.1007/s11709-015-0304-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042875585
    131 https://doi.org/10.1007/s11709-015-0304-z
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s12541-012-0093-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039291156
    134 https://doi.org/10.1007/s12541-012-0093-4
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s12541-012-0205-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007477560
    137 https://doi.org/10.1007/s12541-012-0205-1
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s12541-016-0031-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018151756
    140 https://doi.org/10.1007/s12541-016-0031-y
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s40684-015-0005-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019603298
    143 https://doi.org/10.1007/s40684-015-0005-z
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s40684-015-0006-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012908614
    146 https://doi.org/10.1007/s40684-015-0006-y
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s40684-015-0021-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051934524
    149 https://doi.org/10.1007/s40684-015-0021-z
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s40684-017-0009-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1083867684
    152 https://doi.org/10.1007/s40684-017-0009-y
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s40684-018-0033-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103485911
    155 https://doi.org/10.1007/s40684-018-0033-6
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.aasci.2017.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083750158
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.actamat.2009.02.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005084649
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.commatsci.2013.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053694189
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.earscirev.2016.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022075564
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.engfailanal.2012.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042830645
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.finel.2005.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013937063
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.jeem.2016.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037443208
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.jeurceramsoc.2015.12.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021604277
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.matdes.2009.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016615555
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.matdes.2018.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101390216
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.msea.2004.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036149381
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.surfcoat.2010.08.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024601801
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.surfcoat.2011.02.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042291457
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.surfcoat.2011.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032007308
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.surfcoat.2015.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006722217
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.ygcen.2013.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020821275
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/s0257-8972(02)00743-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021980227
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/s1359-6454(03)00046-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035968480
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1557/mrs.2012.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005219316
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.3795/ksme-a.2009.33.2.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043732776
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.4028/www.scientific.net/amm.598.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071974330
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.7736/kspe.2014.31.1.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051901442
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.7736/kspe.2014.31.12.1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029656880
    202 rdf:type schema:CreativeWork
    203 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
    204 schema:name Department of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, 16419, Suwon-si, Gyeonggi-do, South Korea
    205 rdf:type schema:Organization
    206 https://www.grid.ac/institutes/grid.464614.5 schema:alternateName Korea Railroad Research Institute
    207 schema:name Railroad Type Approval Team, Korea Railroad Research Institute, 176, Cheoldobangmulgwan-ro, 16105, Uiwang-si, Gyeonggi-do, South Korea
    208 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...