Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-08

AUTHORS

Charat Thongprayoon, Michael A. Mao, Mira T. Keddis, Andrea G. Kattah, Grace Y. Chong, Pattharawin Pattharanitima, Voravech Nissaisorakarn, Arvind K. Garg, Stephen B. Erickson, John J. Dillon, Vesna D. Garovic, Wisit Cheungpasitporn

ABSTRACT

BackgroundThe objective of this study was to characterize hypernatremia patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters.MethodsWe performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 922 hospitalized adult patients with admission serum sodium of > 145 mEq/L. We calculated the standardized difference of each variable to identify each cluster’s key features. We assessed the association of each hypernatremia cluster with hospital and 1-year mortality.ResultsThere were three distinct clusters of patients with hypernatremia on admission: 318 (34%) patients in cluster 1, 339 (37%) patients in cluster 2, and 265 (29%) patients in cluster 3. Cluster 1 consisted of more critically ill patients with more severe hypernatremia and hypokalemic hyperchloremic metabolic acidosis. Cluster 2 consisted of older patients with more comorbidity burden, body mass index, and metabolic alkalosis. Cluster 3 consisted of younger patients with less comorbidity burden, higher baseline eGFR, hemoglobin, and serum albumin. Compared to cluster 3, odds ratios for hospital mortality were 15.74 (95% CI 3.75–66.18) for cluster 1, and 6.51 (95% CI 1.48–28.59) for cluster 2, whereas hazard ratios for 1-year mortality were 6.25 (95% CI 3.69–11.46) for cluster 1 and 4.66 (95% CI 2.73–8.59) for cluster 2.ConclusionOur cluster analysis identified three clinically distinct phenotypes with differing mortality risk in patients hospitalized with hypernatremia.Graphic abstract More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2

DOI

http://dx.doi.org/10.1007/s40620-021-01163-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141724501

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34623631


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thongprayoon", 
        "givenName": "Charat", 
        "id": "sg:person.01144500114.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144500114.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mao", 
        "givenName": "Michael A.", 
        "id": "sg:person.01163411500.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163411500.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.417468.8", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keddis", 
        "givenName": "Mira T.", 
        "id": "sg:person.01123551740.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123551740.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kattah", 
        "givenName": "Andrea G.", 
        "id": "sg:person.01227326053.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227326053.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chong", 
        "givenName": "Grace Y.", 
        "id": "sg:person.07401150230.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401150230.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.412434.4", 
          "name": [
            "Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pattharanitima", 
        "givenName": "Pattharawin", 
        "id": "sg:person.0725043240.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725043240.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.415467.5", 
          "name": [
            "Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nissaisorakarn", 
        "givenName": "Voravech", 
        "id": "sg:person.010527555733.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527555733.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garg", 
        "givenName": "Arvind K.", 
        "id": "sg:person.010474317051.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010474317051.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erickson", 
        "givenName": "Stephen B.", 
        "id": "sg:person.0603313221.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603313221.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dillon", 
        "givenName": "John J.", 
        "id": "sg:person.0736713136.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736713136.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garovic", 
        "givenName": "Vesna D.", 
        "id": "sg:person.01027155175.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027155175.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheungpasitporn", 
        "givenName": "Wisit", 
        "id": "sg:person.01141663246.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141663246.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2369-15-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012947208", 
          "https://doi.org/10.1186/1471-2369-15-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042694350", 
          "https://doi.org/10.1038/srep06207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40620-021-01047-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137230236", 
          "https://doi.org/10.1007/s40620-021-01047-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-009-1692-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028009099", 
          "https://doi.org/10.1007/s00134-009-1692-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023949509487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378730", 
          "https://doi.org/10.1023/a:1023949509487"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-08", 
    "datePublishedReg": "2021-10-08", 
    "description": "BackgroundThe objective of this study was to characterize hypernatremia patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters.MethodsWe performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 922 hospitalized adult patients with admission serum sodium of\u2009>\u2009145\u00a0mEq/L. We calculated the standardized difference of each variable to identify each cluster\u2019s key features. We assessed the association of each hypernatremia cluster with hospital and 1-year mortality.ResultsThere were three distinct clusters of patients with hypernatremia on admission: 318 (34%) patients in cluster 1, 339 (37%) patients in cluster 2, and 265 (29%) patients in cluster 3. Cluster 1 consisted of more critically ill patients with more severe hypernatremia and hypokalemic hyperchloremic metabolic acidosis. Cluster 2 consisted of older patients with more comorbidity burden, body mass index, and metabolic alkalosis. Cluster 3 consisted of younger patients with less comorbidity burden, higher baseline eGFR, hemoglobin, and serum albumin. Compared to cluster 3, odds ratios for hospital mortality were 15.74 (95% CI 3.75\u201366.18) for cluster 1, and 6.51 (95% CI 1.48\u201328.59) for cluster 2, whereas hazard ratios for 1-year mortality were 6.25 (95% CI 3.69\u201311.46) for cluster 1 and 4.66 (95% CI 2.73\u20138.59) for cluster 2.ConclusionOur cluster analysis identified three clinically distinct phenotypes with differing mortality risk in patients hospitalized with hypernatremia.Graphic abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40620-021-01163-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1100597", 
        "issn": [
          "1121-8428", 
          "1724-6059"
        ], 
        "name": "Journal of Nephrology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "comorbidity burden", 
      "mortality risk", 
      "admission serum sodium", 
      "higher baseline eGFR", 
      "hyperchloremic metabolic acidosis", 
      "body mass index", 
      "different patient survival", 
      "baseline eGFR", 
      "hospital mortality", 
      "consensus cluster analysis", 
      "older patients", 
      "hospital admission", 
      "adult patients", 
      "severe hypernatremia", 
      "younger patients", 
      "hazard ratio", 
      "serum sodium", 
      "ill patients", 
      "hospitalized patients", 
      "mass index", 
      "patient survival", 
      "metabolic acidosis", 
      "principal diagnosis", 
      "metabolic alkalosis", 
      "patients", 
      "hypernatremia patients", 
      "BackgroundThe objective", 
      "hypernatremia", 
      "mortality", 
      "demographic information", 
      "cluster 2", 
      "laboratory data", 
      "cluster 1", 
      "admission", 
      "standardized difference", 
      "cluster 3", 
      "distinct phenotypes", 
      "burden", 
      "risk", 
      "serum albumin", 
      "comorbidities", 
      "ResultsThere", 
      "alkalosis", 
      "hospital", 
      "acidosis", 
      "EGFR", 
      "MethodsWe", 
      "diagnosis", 
      "hemoglobin", 
      "distinct clusters", 
      "survival", 
      "subgroups", 
      "association", 
      "albumin", 
      "phenotype", 
      "sodium", 
      "index", 
      "differences", 
      "consensus", 
      "study", 
      "key features", 
      "ratio", 
      "cluster analysis", 
      "analysis", 
      "objective", 
      "data", 
      "features", 
      "clusters", 
      "information", 
      "approach", 
      "unsupervised machine", 
      "machine", 
      "cluster\u2019s key features", 
      "hypernatremia cluster", 
      "hypokalemic hyperchloremic metabolic acidosis", 
      "more comorbidity burden", 
      "less comorbidity burden", 
      "Graphic abstract Hypernatremia subgroups", 
      "abstract Hypernatremia subgroups", 
      "Hypernatremia subgroups"
    ], 
    "name": "Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141724501"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40620-021-01163-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34623631"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40620-021-01163-2", 
      "https://app.dimensions.ai/details/publication/pub.1141724501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_909.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40620-021-01163-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      22 PREDICATES      109 URIs      96 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40620-021-01163-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N379ee1183d004d10a900b1aff72d3b08
4 schema:citation sg:pub.10.1007/s00134-009-1692-0
5 sg:pub.10.1007/s40620-021-01047-5
6 sg:pub.10.1023/a:1023949509487
7 sg:pub.10.1038/srep06207
8 sg:pub.10.1186/1471-2369-15-37
9 schema:datePublished 2021-10-08
10 schema:datePublishedReg 2021-10-08
11 schema:description BackgroundThe objective of this study was to characterize hypernatremia patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters.MethodsWe performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 922 hospitalized adult patients with admission serum sodium of > 145 mEq/L. We calculated the standardized difference of each variable to identify each cluster’s key features. We assessed the association of each hypernatremia cluster with hospital and 1-year mortality.ResultsThere were three distinct clusters of patients with hypernatremia on admission: 318 (34%) patients in cluster 1, 339 (37%) patients in cluster 2, and 265 (29%) patients in cluster 3. Cluster 1 consisted of more critically ill patients with more severe hypernatremia and hypokalemic hyperchloremic metabolic acidosis. Cluster 2 consisted of older patients with more comorbidity burden, body mass index, and metabolic alkalosis. Cluster 3 consisted of younger patients with less comorbidity burden, higher baseline eGFR, hemoglobin, and serum albumin. Compared to cluster 3, odds ratios for hospital mortality were 15.74 (95% CI 3.75–66.18) for cluster 1, and 6.51 (95% CI 1.48–28.59) for cluster 2, whereas hazard ratios for 1-year mortality were 6.25 (95% CI 3.69–11.46) for cluster 1 and 4.66 (95% CI 2.73–8.59) for cluster 2.ConclusionOur cluster analysis identified three clinically distinct phenotypes with differing mortality risk in patients hospitalized with hypernatremia.Graphic abstract
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf sg:journal.1100597
16 schema:keywords BackgroundThe objective
17 EGFR
18 Graphic abstract Hypernatremia subgroups
19 Hypernatremia subgroups
20 MethodsWe
21 ResultsThere
22 abstract Hypernatremia subgroups
23 acidosis
24 admission
25 admission serum sodium
26 adult patients
27 albumin
28 alkalosis
29 analysis
30 approach
31 association
32 baseline eGFR
33 body mass index
34 burden
35 cluster 1
36 cluster 2
37 cluster 3
38 cluster analysis
39 clusters
40 cluster’s key features
41 comorbidities
42 comorbidity burden
43 consensus
44 consensus cluster analysis
45 data
46 demographic information
47 diagnosis
48 differences
49 different patient survival
50 distinct clusters
51 distinct phenotypes
52 features
53 hazard ratio
54 hemoglobin
55 higher baseline eGFR
56 hospital
57 hospital admission
58 hospital mortality
59 hospitalized patients
60 hyperchloremic metabolic acidosis
61 hypernatremia
62 hypernatremia cluster
63 hypernatremia patients
64 hypokalemic hyperchloremic metabolic acidosis
65 ill patients
66 index
67 information
68 key features
69 laboratory data
70 less comorbidity burden
71 machine
72 mass index
73 metabolic acidosis
74 metabolic alkalosis
75 more comorbidity burden
76 mortality
77 mortality risk
78 objective
79 older patients
80 patient survival
81 patients
82 phenotype
83 principal diagnosis
84 ratio
85 risk
86 serum albumin
87 serum sodium
88 severe hypernatremia
89 sodium
90 standardized difference
91 study
92 subgroups
93 survival
94 unsupervised machine
95 younger patients
96 schema:name Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival
97 schema:pagination 1-9
98 schema:productId N9967f8ee3e644c91884e437282c7ac6b
99 Nc80caa574114484b978da19e110c1cb3
100 Nd573faf2a5b443828ff87ec63aa52000
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141724501
102 https://doi.org/10.1007/s40620-021-01163-2
103 schema:sdDatePublished 2022-01-01T19:02
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher N830741b4b48f49398e3d7e006f150849
106 schema:url https://doi.org/10.1007/s40620-021-01163-2
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N11aa038ec2cf435bb23cd21045afdab1 rdf:first sg:person.010474317051.16
111 rdf:rest N884fd6fbb8cf491f92db5a4d889f2848
112 N16642309bf10456d92ad44dee2ff4a1e rdf:first sg:person.01027155175.49
113 rdf:rest N427e1504d8b440c288506774fed4094b
114 N379ee1183d004d10a900b1aff72d3b08 rdf:first sg:person.01144500114.63
115 rdf:rest Nfb274cbe2d0f48b2866711a21f048603
116 N427e1504d8b440c288506774fed4094b rdf:first sg:person.01141663246.15
117 rdf:rest rdf:nil
118 N67d441f50c1f477a95f360e0a6e99a48 rdf:first sg:person.010527555733.35
119 rdf:rest N11aa038ec2cf435bb23cd21045afdab1
120 N830741b4b48f49398e3d7e006f150849 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N884fd6fbb8cf491f92db5a4d889f2848 rdf:first sg:person.0603313221.27
123 rdf:rest Nef0ce57937a84d0d83803869b72000b1
124 N9967f8ee3e644c91884e437282c7ac6b schema:name doi
125 schema:value 10.1007/s40620-021-01163-2
126 rdf:type schema:PropertyValue
127 Naad223e93b1044b390fa622402b35edf rdf:first sg:person.01123551740.49
128 rdf:rest Nb2d33db219874fad97ec6e32a8e837c7
129 Naba84569e95f4bf3b0df1f41c7c89ab8 rdf:first sg:person.07401150230.35
130 rdf:rest Nf482140bd8554418946288d47c507d91
131 Nb2d33db219874fad97ec6e32a8e837c7 rdf:first sg:person.01227326053.26
132 rdf:rest Naba84569e95f4bf3b0df1f41c7c89ab8
133 Nc80caa574114484b978da19e110c1cb3 schema:name dimensions_id
134 schema:value pub.1141724501
135 rdf:type schema:PropertyValue
136 Nd573faf2a5b443828ff87ec63aa52000 schema:name pubmed_id
137 schema:value 34623631
138 rdf:type schema:PropertyValue
139 Nef0ce57937a84d0d83803869b72000b1 rdf:first sg:person.0736713136.20
140 rdf:rest N16642309bf10456d92ad44dee2ff4a1e
141 Nf482140bd8554418946288d47c507d91 rdf:first sg:person.0725043240.44
142 rdf:rest N67d441f50c1f477a95f360e0a6e99a48
143 Nfb274cbe2d0f48b2866711a21f048603 rdf:first sg:person.01163411500.24
144 rdf:rest Naad223e93b1044b390fa622402b35edf
145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
146 schema:name Medical and Health Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
149 schema:name Clinical Sciences
150 rdf:type schema:DefinedTerm
151 sg:journal.1100597 schema:issn 1121-8428
152 1724-6059
153 schema:name Journal of Nephrology
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.01027155175.49 schema:affiliation grid-institutes:grid.66875.3a
157 schema:familyName Garovic
158 schema:givenName Vesna D.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027155175.49
160 rdf:type schema:Person
161 sg:person.010474317051.16 schema:affiliation grid-institutes:grid.66875.3a
162 schema:familyName Garg
163 schema:givenName Arvind K.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010474317051.16
165 rdf:type schema:Person
166 sg:person.010527555733.35 schema:affiliation grid-institutes:grid.415467.5
167 schema:familyName Nissaisorakarn
168 schema:givenName Voravech
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527555733.35
170 rdf:type schema:Person
171 sg:person.01123551740.49 schema:affiliation grid-institutes:grid.417468.8
172 schema:familyName Keddis
173 schema:givenName Mira T.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123551740.49
175 rdf:type schema:Person
176 sg:person.01141663246.15 schema:affiliation grid-institutes:grid.66875.3a
177 schema:familyName Cheungpasitporn
178 schema:givenName Wisit
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141663246.15
180 rdf:type schema:Person
181 sg:person.01144500114.63 schema:affiliation grid-institutes:grid.66875.3a
182 schema:familyName Thongprayoon
183 schema:givenName Charat
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144500114.63
185 rdf:type schema:Person
186 sg:person.01163411500.24 schema:affiliation grid-institutes:grid.417467.7
187 schema:familyName Mao
188 schema:givenName Michael A.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163411500.24
190 rdf:type schema:Person
191 sg:person.01227326053.26 schema:affiliation grid-institutes:grid.66875.3a
192 schema:familyName Kattah
193 schema:givenName Andrea G.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227326053.26
195 rdf:type schema:Person
196 sg:person.0603313221.27 schema:affiliation grid-institutes:grid.66875.3a
197 schema:familyName Erickson
198 schema:givenName Stephen B.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603313221.27
200 rdf:type schema:Person
201 sg:person.0725043240.44 schema:affiliation grid-institutes:grid.412434.4
202 schema:familyName Pattharanitima
203 schema:givenName Pattharawin
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725043240.44
205 rdf:type schema:Person
206 sg:person.0736713136.20 schema:affiliation grid-institutes:grid.66875.3a
207 schema:familyName Dillon
208 schema:givenName John J.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736713136.20
210 rdf:type schema:Person
211 sg:person.07401150230.35 schema:affiliation grid-institutes:grid.66875.3a
212 schema:familyName Chong
213 schema:givenName Grace Y.
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401150230.35
215 rdf:type schema:Person
216 sg:pub.10.1007/s00134-009-1692-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028009099
217 https://doi.org/10.1007/s00134-009-1692-0
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s40620-021-01047-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137230236
220 https://doi.org/10.1007/s40620-021-01047-5
221 rdf:type schema:CreativeWork
222 sg:pub.10.1023/a:1023949509487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378730
223 https://doi.org/10.1023/a:1023949509487
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/srep06207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042694350
226 https://doi.org/10.1038/srep06207
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/1471-2369-15-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012947208
229 https://doi.org/10.1186/1471-2369-15-37
230 rdf:type schema:CreativeWork
231 grid-institutes:grid.412434.4 schema:alternateName Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
232 schema:name Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
233 rdf:type schema:Organization
234 grid-institutes:grid.415467.5 schema:alternateName Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA, USA
235 schema:name Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA, USA
236 rdf:type schema:Organization
237 grid-institutes:grid.417467.7 schema:alternateName Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
238 schema:name Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
239 rdf:type schema:Organization
240 grid-institutes:grid.417468.8 schema:alternateName Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA
241 schema:name Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA
242 rdf:type schema:Organization
243 grid-institutes:grid.66875.3a schema:alternateName Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
244 schema:name Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...