Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-08

AUTHORS

Charat Thongprayoon, Michael A. Mao, Mira T. Keddis, Andrea G. Kattah, Grace Y. Chong, Pattharawin Pattharanitima, Voravech Nissaisorakarn, Arvind K. Garg, Stephen B. Erickson, John J. Dillon, Vesna D. Garovic, Wisit Cheungpasitporn

ABSTRACT

BackgroundThe objective of this study was to characterize hypernatremia patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters.MethodsWe performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 922 hospitalized adult patients with admission serum sodium of > 145 mEq/L. We calculated the standardized difference of each variable to identify each cluster’s key features. We assessed the association of each hypernatremia cluster with hospital and 1-year mortality.ResultsThere were three distinct clusters of patients with hypernatremia on admission: 318 (34%) patients in cluster 1, 339 (37%) patients in cluster 2, and 265 (29%) patients in cluster 3. Cluster 1 consisted of more critically ill patients with more severe hypernatremia and hypokalemic hyperchloremic metabolic acidosis. Cluster 2 consisted of older patients with more comorbidity burden, body mass index, and metabolic alkalosis. Cluster 3 consisted of younger patients with less comorbidity burden, higher baseline eGFR, hemoglobin, and serum albumin. Compared to cluster 3, odds ratios for hospital mortality were 15.74 (95% CI 3.75–66.18) for cluster 1, and 6.51 (95% CI 1.48–28.59) for cluster 2, whereas hazard ratios for 1-year mortality were 6.25 (95% CI 3.69–11.46) for cluster 1 and 4.66 (95% CI 2.73–8.59) for cluster 2.ConclusionOur cluster analysis identified three clinically distinct phenotypes with differing mortality risk in patients hospitalized with hypernatremia.Graphic abstract More... »

PAGES

921-929

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2

DOI

http://dx.doi.org/10.1007/s40620-021-01163-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141724501

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34623631


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Consensus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypernatremia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thongprayoon", 
        "givenName": "Charat", 
        "id": "sg:person.01144500114.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144500114.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mao", 
        "givenName": "Michael A.", 
        "id": "sg:person.01163411500.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163411500.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.470142.4", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keddis", 
        "givenName": "Mira T.", 
        "id": "sg:person.01123551740.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123551740.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kattah", 
        "givenName": "Andrea G.", 
        "id": "sg:person.01227326053.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227326053.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chong", 
        "givenName": "Grace Y.", 
        "id": "sg:person.07401150230.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401150230.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.412434.4", 
          "name": [
            "Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pattharanitima", 
        "givenName": "Pattharawin", 
        "id": "sg:person.0725043240.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725043240.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.429997.8", 
          "name": [
            "Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nissaisorakarn", 
        "givenName": "Voravech", 
        "id": "sg:person.010527555733.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527555733.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garg", 
        "givenName": "Arvind K.", 
        "id": "sg:person.010474317051.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010474317051.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erickson", 
        "givenName": "Stephen B.", 
        "id": "sg:person.0603313221.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603313221.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dillon", 
        "givenName": "John J.", 
        "id": "sg:person.0736713136.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736713136.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garovic", 
        "givenName": "Vesna D.", 
        "id": "sg:person.01027155175.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027155175.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheungpasitporn", 
        "givenName": "Wisit", 
        "id": "sg:person.01141663246.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141663246.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2369-15-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012947208", 
          "https://doi.org/10.1186/1471-2369-15-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023949509487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378730", 
          "https://doi.org/10.1023/a:1023949509487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042694350", 
          "https://doi.org/10.1038/srep06207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-009-1692-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028009099", 
          "https://doi.org/10.1007/s00134-009-1692-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40620-021-01047-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137230236", 
          "https://doi.org/10.1007/s40620-021-01047-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-08", 
    "datePublishedReg": "2021-10-08", 
    "description": "BackgroundThe objective of this study was to characterize hypernatremia patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters.MethodsWe performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 922 hospitalized adult patients with admission serum sodium of\u2009>\u2009145\u00a0mEq/L. We calculated the standardized difference of each variable to identify each cluster\u2019s key features. We assessed the association of each hypernatremia cluster with hospital and 1-year mortality.ResultsThere were three distinct clusters of patients with hypernatremia on admission: 318 (34%) patients in cluster 1, 339 (37%) patients in cluster 2, and 265 (29%) patients in cluster 3. Cluster 1 consisted of more critically ill patients with more severe hypernatremia and hypokalemic hyperchloremic metabolic acidosis. Cluster 2 consisted of older patients with more comorbidity burden, body mass index, and metabolic alkalosis. Cluster 3 consisted of younger patients with less comorbidity burden, higher baseline eGFR, hemoglobin, and serum albumin. Compared to cluster 3, odds ratios for hospital mortality were 15.74 (95% CI 3.75\u201366.18) for cluster 1, and 6.51 (95% CI 1.48\u201328.59) for cluster 2, whereas hazard ratios for 1-year mortality were 6.25 (95% CI 3.69\u201311.46) for cluster 1 and 4.66 (95% CI 2.73\u20138.59) for cluster 2.ConclusionOur cluster analysis identified three clinically distinct phenotypes with differing mortality risk in patients hospitalized with hypernatremia.Graphic abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40620-021-01163-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1100597", 
        "issn": [
          "1121-8428", 
          "1724-6059"
        ], 
        "name": "Journal of Nephrology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "comorbidity burden", 
      "mortality risk", 
      "admission serum sodium", 
      "cluster's key features", 
      "less comorbidity burden", 
      "higher baseline eGFR", 
      "hyperchloremic metabolic acidosis", 
      "body mass index", 
      "consensus cluster analysis", 
      "different patient survival", 
      "baseline eGFR", 
      "hospital mortality", 
      "adult patients", 
      "older patients", 
      "younger patients", 
      "hazard ratio", 
      "hospital admission", 
      "ill patients", 
      "severe hypernatremia", 
      "hospitalized patients", 
      "serum sodium", 
      "mass index", 
      "patient survival", 
      "metabolic acidosis", 
      "principal diagnosis", 
      "metabolic alkalosis", 
      "BackgroundThe objective", 
      "hypernatremia patients", 
      "patients", 
      "hypernatremia", 
      "cluster 1", 
      "cluster 2", 
      "mortality", 
      "demographic information", 
      "laboratory data", 
      "admission", 
      "standardized difference", 
      "cluster 3", 
      "distinct phenotypes", 
      "burden", 
      "risk", 
      "serum albumin", 
      "comorbidities", 
      "ResultsThere", 
      "hospital", 
      "acidosis", 
      "alkalosis", 
      "EGFR", 
      "MethodsWe", 
      "distinct clusters", 
      "diagnosis", 
      "hemoglobin", 
      "survival", 
      "subgroups", 
      "association", 
      "albumin", 
      "phenotype", 
      "sodium", 
      "index", 
      "differences", 
      "consensus", 
      "study", 
      "key features", 
      "cluster analysis", 
      "ratio", 
      "analysis", 
      "objective", 
      "data", 
      "features", 
      "clusters", 
      "information", 
      "approach", 
      "unsupervised machine", 
      "machine"
    ], 
    "name": "Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival", 
    "pagination": "921-929", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141724501"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40620-021-01163-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34623631"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40620-021-01163-2", 
      "https://app.dimensions.ai/details/publication/pub.1141724501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_885.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40620-021-01163-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40620-021-01163-2'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      22 PREDICATES      111 URIs      98 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40620-021-01163-2 schema:about N381a1b675d27463c93f9d3489b058cef
2 N3927650477524a33aef2042df258aa89
3 N53bc41c152cb47c7ab1fec982e5bc44e
4 Nba940c510a02432dbd3212c334224ddd
5 Ne2909e3da0b74f4a9de1d592e7a9b83d
6 Ne3a11cec598b415c9a3537d5e8a3c94f
7 anzsrc-for:11
8 anzsrc-for:1103
9 schema:author Ndcbd9511bbd644a8bd3d83fe4164052a
10 schema:citation sg:pub.10.1007/s00134-009-1692-0
11 sg:pub.10.1007/s40620-021-01047-5
12 sg:pub.10.1023/a:1023949509487
13 sg:pub.10.1038/srep06207
14 sg:pub.10.1186/1471-2369-15-37
15 schema:datePublished 2021-10-08
16 schema:datePublishedReg 2021-10-08
17 schema:description BackgroundThe objective of this study was to characterize hypernatremia patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters.MethodsWe performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 922 hospitalized adult patients with admission serum sodium of > 145 mEq/L. We calculated the standardized difference of each variable to identify each cluster’s key features. We assessed the association of each hypernatremia cluster with hospital and 1-year mortality.ResultsThere were three distinct clusters of patients with hypernatremia on admission: 318 (34%) patients in cluster 1, 339 (37%) patients in cluster 2, and 265 (29%) patients in cluster 3. Cluster 1 consisted of more critically ill patients with more severe hypernatremia and hypokalemic hyperchloremic metabolic acidosis. Cluster 2 consisted of older patients with more comorbidity burden, body mass index, and metabolic alkalosis. Cluster 3 consisted of younger patients with less comorbidity burden, higher baseline eGFR, hemoglobin, and serum albumin. Compared to cluster 3, odds ratios for hospital mortality were 15.74 (95% CI 3.75–66.18) for cluster 1, and 6.51 (95% CI 1.48–28.59) for cluster 2, whereas hazard ratios for 1-year mortality were 6.25 (95% CI 3.69–11.46) for cluster 1 and 4.66 (95% CI 2.73–8.59) for cluster 2.ConclusionOur cluster analysis identified three clinically distinct phenotypes with differing mortality risk in patients hospitalized with hypernatremia.Graphic abstract
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N44e606ec9bca40989eb43b7a5194a1f6
22 N5dd23e3b1a3345d68246b8afb3371f74
23 sg:journal.1100597
24 schema:keywords BackgroundThe objective
25 EGFR
26 MethodsWe
27 ResultsThere
28 acidosis
29 admission
30 admission serum sodium
31 adult patients
32 albumin
33 alkalosis
34 analysis
35 approach
36 association
37 baseline eGFR
38 body mass index
39 burden
40 cluster 1
41 cluster 2
42 cluster 3
43 cluster analysis
44 cluster's key features
45 clusters
46 comorbidities
47 comorbidity burden
48 consensus
49 consensus cluster analysis
50 data
51 demographic information
52 diagnosis
53 differences
54 different patient survival
55 distinct clusters
56 distinct phenotypes
57 features
58 hazard ratio
59 hemoglobin
60 higher baseline eGFR
61 hospital
62 hospital admission
63 hospital mortality
64 hospitalized patients
65 hyperchloremic metabolic acidosis
66 hypernatremia
67 hypernatremia patients
68 ill patients
69 index
70 information
71 key features
72 laboratory data
73 less comorbidity burden
74 machine
75 mass index
76 metabolic acidosis
77 metabolic alkalosis
78 mortality
79 mortality risk
80 objective
81 older patients
82 patient survival
83 patients
84 phenotype
85 principal diagnosis
86 ratio
87 risk
88 serum albumin
89 serum sodium
90 severe hypernatremia
91 sodium
92 standardized difference
93 study
94 subgroups
95 survival
96 unsupervised machine
97 younger patients
98 schema:name Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival
99 schema:pagination 921-929
100 schema:productId N57d3c34198df4e46b4f9f971bbba86d5
101 Na459977364784da599f91522a746a671
102 Nfbadeee5b76c480c9b21f8027644dcf0
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141724501
104 https://doi.org/10.1007/s40620-021-01163-2
105 schema:sdDatePublished 2022-05-20T07:38
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N1061feac0c3c45e092b278e9143bb8fc
108 schema:url https://doi.org/10.1007/s40620-021-01163-2
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N074076d45d0c409888c4abd365afba0a rdf:first sg:person.0603313221.27
113 rdf:rest Nbd2607678a394058bc366dcaeb9d6954
114 N1061feac0c3c45e092b278e9143bb8fc schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N3103b27e4526404daec9b6d30edb5852 rdf:first sg:person.01123551740.49
117 rdf:rest Na7cb2129b9ba447e90d9a17a253f76b7
118 N381a1b675d27463c93f9d3489b058cef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Cluster Analysis
120 rdf:type schema:DefinedTerm
121 N3927650477524a33aef2042df258aa89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Machine Learning
123 rdf:type schema:DefinedTerm
124 N410bbe5558454281b4d33f82b2fd4246 rdf:first sg:person.01141663246.15
125 rdf:rest rdf:nil
126 N44e606ec9bca40989eb43b7a5194a1f6 schema:volumeNumber 35
127 rdf:type schema:PublicationVolume
128 N53bc41c152cb47c7ab1fec982e5bc44e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Consensus
130 rdf:type schema:DefinedTerm
131 N57d3c34198df4e46b4f9f971bbba86d5 schema:name doi
132 schema:value 10.1007/s40620-021-01163-2
133 rdf:type schema:PropertyValue
134 N5c64a3ff55c84fe19ad4d842070e6cbd rdf:first sg:person.01163411500.24
135 rdf:rest N3103b27e4526404daec9b6d30edb5852
136 N5dd23e3b1a3345d68246b8afb3371f74 schema:issueNumber 3
137 rdf:type schema:PublicationIssue
138 N705d829818b14e10852c33ac4a063675 rdf:first sg:person.010474317051.16
139 rdf:rest N074076d45d0c409888c4abd365afba0a
140 N94201d6e70294ebba918a9bac2338653 rdf:first sg:person.0725043240.44
141 rdf:rest Nde6c5e53b18d4fc395bde1e7ca3e28e1
142 Na459977364784da599f91522a746a671 schema:name dimensions_id
143 schema:value pub.1141724501
144 rdf:type schema:PropertyValue
145 Na7cb2129b9ba447e90d9a17a253f76b7 rdf:first sg:person.01227326053.26
146 rdf:rest Ne01cffd2490540bfa2463091ec611a3e
147 Nba940c510a02432dbd3212c334224ddd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 Nbd2607678a394058bc366dcaeb9d6954 rdf:first sg:person.0736713136.20
151 rdf:rest Nbd8136c7680a4b789fca1575117e25b3
152 Nbd8136c7680a4b789fca1575117e25b3 rdf:first sg:person.01027155175.49
153 rdf:rest N410bbe5558454281b4d33f82b2fd4246
154 Ndcbd9511bbd644a8bd3d83fe4164052a rdf:first sg:person.01144500114.63
155 rdf:rest N5c64a3ff55c84fe19ad4d842070e6cbd
156 Nde6c5e53b18d4fc395bde1e7ca3e28e1 rdf:first sg:person.010527555733.35
157 rdf:rest N705d829818b14e10852c33ac4a063675
158 Ne01cffd2490540bfa2463091ec611a3e rdf:first sg:person.07401150230.35
159 rdf:rest N94201d6e70294ebba918a9bac2338653
160 Ne2909e3da0b74f4a9de1d592e7a9b83d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Retrospective Studies
162 rdf:type schema:DefinedTerm
163 Ne3a11cec598b415c9a3537d5e8a3c94f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Hypernatremia
165 rdf:type schema:DefinedTerm
166 Nfbadeee5b76c480c9b21f8027644dcf0 schema:name pubmed_id
167 schema:value 34623631
168 rdf:type schema:PropertyValue
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
173 schema:name Clinical Sciences
174 rdf:type schema:DefinedTerm
175 sg:journal.1100597 schema:issn 1121-8428
176 1724-6059
177 schema:name Journal of Nephrology
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.01027155175.49 schema:affiliation grid-institutes:grid.66875.3a
181 schema:familyName Garovic
182 schema:givenName Vesna D.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027155175.49
184 rdf:type schema:Person
185 sg:person.010474317051.16 schema:affiliation grid-institutes:grid.66875.3a
186 schema:familyName Garg
187 schema:givenName Arvind K.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010474317051.16
189 rdf:type schema:Person
190 sg:person.010527555733.35 schema:affiliation grid-institutes:grid.429997.8
191 schema:familyName Nissaisorakarn
192 schema:givenName Voravech
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527555733.35
194 rdf:type schema:Person
195 sg:person.01123551740.49 schema:affiliation grid-institutes:grid.470142.4
196 schema:familyName Keddis
197 schema:givenName Mira T.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123551740.49
199 rdf:type schema:Person
200 sg:person.01141663246.15 schema:affiliation grid-institutes:grid.66875.3a
201 schema:familyName Cheungpasitporn
202 schema:givenName Wisit
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141663246.15
204 rdf:type schema:Person
205 sg:person.01144500114.63 schema:affiliation grid-institutes:grid.66875.3a
206 schema:familyName Thongprayoon
207 schema:givenName Charat
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144500114.63
209 rdf:type schema:Person
210 sg:person.01163411500.24 schema:affiliation grid-institutes:grid.417467.7
211 schema:familyName Mao
212 schema:givenName Michael A.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163411500.24
214 rdf:type schema:Person
215 sg:person.01227326053.26 schema:affiliation grid-institutes:grid.66875.3a
216 schema:familyName Kattah
217 schema:givenName Andrea G.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227326053.26
219 rdf:type schema:Person
220 sg:person.0603313221.27 schema:affiliation grid-institutes:grid.66875.3a
221 schema:familyName Erickson
222 schema:givenName Stephen B.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603313221.27
224 rdf:type schema:Person
225 sg:person.0725043240.44 schema:affiliation grid-institutes:grid.412434.4
226 schema:familyName Pattharanitima
227 schema:givenName Pattharawin
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725043240.44
229 rdf:type schema:Person
230 sg:person.0736713136.20 schema:affiliation grid-institutes:grid.66875.3a
231 schema:familyName Dillon
232 schema:givenName John J.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736713136.20
234 rdf:type schema:Person
235 sg:person.07401150230.35 schema:affiliation grid-institutes:grid.66875.3a
236 schema:familyName Chong
237 schema:givenName Grace Y.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401150230.35
239 rdf:type schema:Person
240 sg:pub.10.1007/s00134-009-1692-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028009099
241 https://doi.org/10.1007/s00134-009-1692-0
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s40620-021-01047-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137230236
244 https://doi.org/10.1007/s40620-021-01047-5
245 rdf:type schema:CreativeWork
246 sg:pub.10.1023/a:1023949509487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378730
247 https://doi.org/10.1023/a:1023949509487
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/srep06207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042694350
250 https://doi.org/10.1038/srep06207
251 rdf:type schema:CreativeWork
252 sg:pub.10.1186/1471-2369-15-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012947208
253 https://doi.org/10.1186/1471-2369-15-37
254 rdf:type schema:CreativeWork
255 grid-institutes:grid.412434.4 schema:alternateName Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
256 schema:name Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
257 rdf:type schema:Organization
258 grid-institutes:grid.417467.7 schema:alternateName Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
259 schema:name Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
260 rdf:type schema:Organization
261 grid-institutes:grid.429997.8 schema:alternateName Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA, USA
262 schema:name Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Boston, MA, USA
263 rdf:type schema:Organization
264 grid-institutes:grid.470142.4 schema:alternateName Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA
265 schema:name Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA
266 rdf:type schema:Organization
267 grid-institutes:grid.66875.3a schema:alternateName Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
268 schema:name Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...