High serum osteopontin levels are associated with prevalent fractures and worse lipid profile in post-menopausal women with type 2 diabetes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-18

AUTHORS

T. Filardi, V. Carnevale, R. Massoud, C. Russo, L. Nieddu, F. Tavaglione, I. Turinese, A. Lenzi, E. Romagnoli, S. Morano

ABSTRACT

PurposePatients with type 2 diabetes (T2DM) have increased fracture risk. Osteopontin (OPN) is a protein involved in bone remodeling and inflammation. The aim of this study was to evaluate the association of OPN with fracture prevalence and with metabolic parameters in post-menopausal women with T2DM.MethodsSixty-four post-menopausal women with T2DM (age 67.0 ± 7.8 years, diabetes duration 8.9 ± 6.7 years), enrolled in a previous study, were followed up (3.6 ± 0.9 years). Previous fragility fractures were recorded. The FRAX score (without BMD) was calculated and biochemical parameters (plasma glucose, HbA1c, lipid profile and renal function) were assessed. Serum 25OH-vitamin D, calcium, PTH and OPN were evaluated at baseline. The association between OPN and fracture prevalence at baseline was evaluated by a logistic model.ResultsOPN levels were higher in patients with previous fractures (n.25) than in patients without previous fractures at baseline (n.39) (p = 0.006). The odds of having fractures at baseline increased by 6.7 (1.9–31.4, 95% CI, p = 0.007) for each increase of 1 ng/ml in OPN levels, after adjustment for vitamin D and HbA1c levels. Fracture incidence was 4.7%. Higher OPN associated with a decrease in HDL-cholesterol (p = 0.048), after adjustment for age, basal HDL-cholesterol, basal and follow-up HbA1c and follow-up duration. 25OH-vitamin D associated with an increase in FRAX-estimated probability of hip fracture at follow-up (p = 0.029), after adjustment for age, 25OH-vitamin D and time.ConclusionsIn post-menopausal women with T2DM, OPN might be a useful marker of fracture and worse lipid profile. More... »

PAGES

295-301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40618-018-0914-0

DOI

http://dx.doi.org/10.1007/s40618-018-0914-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104906634

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29916137


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycated Hemoglobin A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hip Fractures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Italy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteopontin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteoporotic Fractures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postmenopause", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filardi", 
        "givenName": "T.", 
        "id": "sg:person.0646444335.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646444335.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit of Internal Medicine, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy", 
          "id": "http://www.grid.ac/institutes/grid.413503.0", 
          "name": [
            "Unit of Internal Medicine, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carnevale", 
        "givenName": "V.", 
        "id": "sg:person.0655360602.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655360602.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Massoud", 
        "givenName": "R.", 
        "id": "sg:person.01301603122.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301603122.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russo", 
        "givenName": "C.", 
        "id": "sg:person.015100527327.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100527327.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Economics, UNINT University, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.437533.5", 
          "name": [
            "Faculty of Economics, UNINT University, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nieddu", 
        "givenName": "L.", 
        "id": "sg:person.01131756324.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131756324.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tavaglione", 
        "givenName": "F.", 
        "id": "sg:person.0726363743.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726363743.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Public Health and Infectious Diseases, \u201cSapienza\u201d University, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Public Health and Infectious Diseases, \u201cSapienza\u201d University, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turinese", 
        "givenName": "I.", 
        "id": "sg:person.0626515567.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626515567.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lenzi", 
        "givenName": "A.", 
        "id": "sg:person.01276450542.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276450542.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romagnoli", 
        "givenName": "E.", 
        "id": "sg:person.01037447456.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037447456.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Experimental Medicine, Policlinico Umberto I, \u201cSapienza\u201d University of Rome, Viale del Policlinico 155, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morano", 
        "givenName": "S.", 
        "id": "sg:person.01153222626.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153222626.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11745-010-3513-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002765224", 
          "https://doi.org/10.1007/s11745-010-3513-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-015-3279-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044606988", 
          "https://doi.org/10.1007/s00198-015-3279-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-006-0253-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022229581", 
          "https://doi.org/10.1007/s00198-006-0253-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-18", 
    "datePublishedReg": "2018-06-18", 
    "description": "PurposePatients with type 2 diabetes (T2DM) have increased fracture risk. Osteopontin (OPN) is a protein involved in bone remodeling and inflammation. The aim of this study was to evaluate the association of OPN with fracture prevalence and with metabolic parameters in post-menopausal women with T2DM.MethodsSixty-four post-menopausal women with T2DM (age 67.0\u2009\u00b1\u20097.8\u00a0years, diabetes duration 8.9\u2009\u00b1\u20096.7\u00a0years), enrolled in a previous study, were followed up (3.6\u2009\u00b1\u20090.9\u00a0years). Previous fragility fractures were recorded. The FRAX score (without BMD) was calculated and biochemical parameters (plasma glucose, HbA1c, lipid profile and renal function) were assessed. Serum 25OH-vitamin D, calcium, PTH and OPN were evaluated at baseline. The association between OPN and fracture prevalence at baseline was evaluated by a logistic model.ResultsOPN levels were higher in patients with previous fractures (n.25) than in patients without previous fractures at baseline (n.39) (p\u2009=\u20090.006). The odds of having fractures at baseline increased by 6.7 (1.9\u201331.4, 95% CI, p\u2009=\u20090.007) for each increase of 1\u00a0ng/ml in OPN levels, after adjustment for vitamin D and HbA1c levels. Fracture incidence was 4.7%. Higher OPN associated with a decrease in HDL-cholesterol (p\u2009=\u20090.048), after adjustment for age, basal HDL-cholesterol, basal and follow-up HbA1c and follow-up duration. 25OH-vitamin D associated with an increase in FRAX-estimated probability of hip fracture at follow-up (p\u2009=\u20090.029), after adjustment for age, 25OH-vitamin D and time.ConclusionsIn post-menopausal women with T2DM, OPN might be a useful marker of fracture and worse lipid profile.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40618-018-0914-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1088396", 
        "issn": [
          "0391-4097", 
          "1720-8386"
        ], 
        "name": "Journal of Endocrinological Investigation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "post-menopausal women", 
      "worse lipid profile", 
      "HDL-cholesterol", 
      "type 2 diabetes", 
      "previous fracture", 
      "fracture prevalence", 
      "lipid profile", 
      "higher serum osteopontin levels", 
      "previous fragility fracture", 
      "serum osteopontin levels", 
      "Association of osteopontin", 
      "fragility fractures", 
      "FRAX score", 
      "hip fracture", 
      "fracture incidence", 
      "prevalent fractures", 
      "fracture risk", 
      "OPN levels", 
      "vitamin D", 
      "osteopontin levels", 
      "metabolic parameters", 
      "T2DM", 
      "biochemical parameters", 
      "useful marker", 
      "bone remodeling", 
      "baseline", 
      "women", 
      "diabetes", 
      "patients", 
      "osteopontin", 
      "prevalence", 
      "fractures", 
      "age", 
      "association", 
      "previous studies", 
      "logistic model", 
      "PurposePatients", 
      "HbA1c", 
      "FRAX", 
      "adjustment", 
      "inflammation", 
      "levels", 
      "PTH", 
      "incidence", 
      "MethodsSixty", 
      "serum", 
      "odds", 
      "basal", 
      "remodeling", 
      "risk", 
      "scores", 
      "study", 
      "duration", 
      "markers", 
      "increase", 
      "calcium", 
      "aim", 
      "profile", 
      "decrease", 
      "protein", 
      "time", 
      "parameters", 
      "model", 
      "probability", 
      "ResultsOPN levels", 
      "Higher OPN", 
      "basal HDL-cholesterol", 
      "ConclusionsIn post-menopausal women"
    ], 
    "name": "High serum osteopontin levels are associated with prevalent fractures and worse lipid profile in post-menopausal women with type 2 diabetes", 
    "pagination": "295-301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104906634"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40618-018-0914-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29916137"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40618-018-0914-0", 
      "https://app.dimensions.ai/details/publication/pub.1104906634"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_770.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40618-018-0914-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40618-018-0914-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40618-018-0914-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40618-018-0914-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40618-018-0914-0'


 

This table displays all metadata directly associated to this object as RDF triples.

284 TRIPLES      22 PREDICATES      114 URIs      103 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40618-018-0914-0 schema:about N37f87b047e4b4f4789fa9dfba9e94698
2 N3a3678e1ca394d90b60a4273ca3b4895
3 N45e2f0f77fe34f45b7e68d2a23fb941b
4 N46729d4c4fa5424d92a3fd1732d18808
5 N48d781c0fb174339aacf565910f29f02
6 N51816c0337a549c7a0f04dc0730c445b
7 N56a02e0e600f4bdd9a8cee616858aca0
8 N59d403d27ce34dbfbcf837bb57a65395
9 N6bef5dceacf84431928a746c1b0e962b
10 N70b68d3f8e76429f84048bd1832ca5f7
11 Na4de93b8dbeb44aebfe06f87dfa9a52f
12 Nb10b1421a4a149f38e9704c7797e8986
13 Nb8c148c0a088420288171d4f4c2155a2
14 Nbb422ebe1877410dbcff196cbdb1b20f
15 Nd679cf020be84ecc91dafc48e65f25dc
16 Nda216d1583e34670bf8f9856eb62a6f9
17 Nf6eaafb285e14b3dab32147fab515ee5
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N3a2b6857aced420ea7ec113e2accf6a4
21 schema:citation sg:pub.10.1007/s00198-006-0253-4
22 sg:pub.10.1007/s00198-015-3279-7
23 sg:pub.10.1007/s11745-010-3513-1
24 schema:datePublished 2018-06-18
25 schema:datePublishedReg 2018-06-18
26 schema:description PurposePatients with type 2 diabetes (T2DM) have increased fracture risk. Osteopontin (OPN) is a protein involved in bone remodeling and inflammation. The aim of this study was to evaluate the association of OPN with fracture prevalence and with metabolic parameters in post-menopausal women with T2DM.MethodsSixty-four post-menopausal women with T2DM (age 67.0 ± 7.8 years, diabetes duration 8.9 ± 6.7 years), enrolled in a previous study, were followed up (3.6 ± 0.9 years). Previous fragility fractures were recorded. The FRAX score (without BMD) was calculated and biochemical parameters (plasma glucose, HbA1c, lipid profile and renal function) were assessed. Serum 25OH-vitamin D, calcium, PTH and OPN were evaluated at baseline. The association between OPN and fracture prevalence at baseline was evaluated by a logistic model.ResultsOPN levels were higher in patients with previous fractures (n.25) than in patients without previous fractures at baseline (n.39) (p = 0.006). The odds of having fractures at baseline increased by 6.7 (1.9–31.4, 95% CI, p = 0.007) for each increase of 1 ng/ml in OPN levels, after adjustment for vitamin D and HbA1c levels. Fracture incidence was 4.7%. Higher OPN associated with a decrease in HDL-cholesterol (p = 0.048), after adjustment for age, basal HDL-cholesterol, basal and follow-up HbA1c and follow-up duration. 25OH-vitamin D associated with an increase in FRAX-estimated probability of hip fracture at follow-up (p = 0.029), after adjustment for age, 25OH-vitamin D and time.ConclusionsIn post-menopausal women with T2DM, OPN might be a useful marker of fracture and worse lipid profile.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Nb7f18f0351fe4f33a6616e60b3c99a69
31 Ndb33ce5f323d40e398c7ed5593e51752
32 sg:journal.1088396
33 schema:keywords Association of osteopontin
34 ConclusionsIn post-menopausal women
35 FRAX
36 FRAX score
37 HDL-cholesterol
38 HbA1c
39 Higher OPN
40 MethodsSixty
41 OPN levels
42 PTH
43 PurposePatients
44 ResultsOPN levels
45 T2DM
46 adjustment
47 age
48 aim
49 association
50 basal
51 basal HDL-cholesterol
52 baseline
53 biochemical parameters
54 bone remodeling
55 calcium
56 decrease
57 diabetes
58 duration
59 fracture incidence
60 fracture prevalence
61 fracture risk
62 fractures
63 fragility fractures
64 higher serum osteopontin levels
65 hip fracture
66 incidence
67 increase
68 inflammation
69 levels
70 lipid profile
71 logistic model
72 markers
73 metabolic parameters
74 model
75 odds
76 osteopontin
77 osteopontin levels
78 parameters
79 patients
80 post-menopausal women
81 prevalence
82 prevalent fractures
83 previous fracture
84 previous fragility fracture
85 previous studies
86 probability
87 profile
88 protein
89 remodeling
90 risk
91 scores
92 serum
93 serum osteopontin levels
94 study
95 time
96 type 2 diabetes
97 useful marker
98 vitamin D
99 women
100 worse lipid profile
101 schema:name High serum osteopontin levels are associated with prevalent fractures and worse lipid profile in post-menopausal women with type 2 diabetes
102 schema:pagination 295-301
103 schema:productId N18badeb37ce847389cf769c0b510d05d
104 N981304cb88ad41c98a37c0a99e305e45
105 Neac7138b8bd94a369e93d5abce6cc61b
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104906634
107 https://doi.org/10.1007/s40618-018-0914-0
108 schema:sdDatePublished 2021-11-01T18:32
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N2e44edebae644f8dbc362497ff6abc42
111 schema:url https://doi.org/10.1007/s40618-018-0914-0
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N0380f088ffd845a59173a74c705a2c84 rdf:first sg:person.01037447456.03
116 rdf:rest Neb0286e8503c4e60b0dde7985e3d7fe4
117 N18badeb37ce847389cf769c0b510d05d schema:name dimensions_id
118 schema:value pub.1104906634
119 rdf:type schema:PropertyValue
120 N19f138c18d8841a5868763f18148b455 rdf:first sg:person.0626515567.91
121 rdf:rest N6d7f406ba9a9407a84b4c0074b25d3d9
122 N23680ec254a04a4e93115484de51c3d6 rdf:first sg:person.01131756324.77
123 rdf:rest Nde640a22c1ae46e98cf691bcca5a6df2
124 N2b62fbf60d654acc83bae08f070aa160 rdf:first sg:person.0655360602.32
125 rdf:rest N50ef438657e64bd0a3ebfd03cb3eeab4
126 N2e44edebae644f8dbc362497ff6abc42 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N37f87b047e4b4f4789fa9dfba9e94698 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Glycated Hemoglobin A
130 rdf:type schema:DefinedTerm
131 N3a2b6857aced420ea7ec113e2accf6a4 rdf:first sg:person.0646444335.69
132 rdf:rest N2b62fbf60d654acc83bae08f070aa160
133 N3a3678e1ca394d90b60a4273ca3b4895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Aged
135 rdf:type schema:DefinedTerm
136 N45e2f0f77fe34f45b7e68d2a23fb941b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Humans
138 rdf:type schema:DefinedTerm
139 N46729d4c4fa5424d92a3fd1732d18808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Prognosis
141 rdf:type schema:DefinedTerm
142 N48d781c0fb174339aacf565910f29f02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Postmenopause
144 rdf:type schema:DefinedTerm
145 N50ef438657e64bd0a3ebfd03cb3eeab4 rdf:first sg:person.01301603122.03
146 rdf:rest N9bc4ec8a3f9b4c32a814a92ca6004fe6
147 N51816c0337a549c7a0f04dc0730c445b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Blood Glucose
149 rdf:type schema:DefinedTerm
150 N56a02e0e600f4bdd9a8cee616858aca0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Italy
152 rdf:type schema:DefinedTerm
153 N59d403d27ce34dbfbcf837bb57a65395 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Osteopontin
155 rdf:type schema:DefinedTerm
156 N6bef5dceacf84431928a746c1b0e962b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Lipids
158 rdf:type schema:DefinedTerm
159 N6d7f406ba9a9407a84b4c0074b25d3d9 rdf:first sg:person.01276450542.25
160 rdf:rest N0380f088ffd845a59173a74c705a2c84
161 N70b68d3f8e76429f84048bd1832ca5f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Prevalence
163 rdf:type schema:DefinedTerm
164 N981304cb88ad41c98a37c0a99e305e45 schema:name doi
165 schema:value 10.1007/s40618-018-0914-0
166 rdf:type schema:PropertyValue
167 N9bc4ec8a3f9b4c32a814a92ca6004fe6 rdf:first sg:person.015100527327.16
168 rdf:rest N23680ec254a04a4e93115484de51c3d6
169 Na4de93b8dbeb44aebfe06f87dfa9a52f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Diabetes Mellitus, Type 2
171 rdf:type schema:DefinedTerm
172 Nb10b1421a4a149f38e9704c7797e8986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Follow-Up Studies
174 rdf:type schema:DefinedTerm
175 Nb7f18f0351fe4f33a6616e60b3c99a69 schema:issueNumber 3
176 rdf:type schema:PublicationIssue
177 Nb8c148c0a088420288171d4f4c2155a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Longitudinal Studies
179 rdf:type schema:DefinedTerm
180 Nbb422ebe1877410dbcff196cbdb1b20f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Hip Fractures
182 rdf:type schema:DefinedTerm
183 Nd679cf020be84ecc91dafc48e65f25dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Female
185 rdf:type schema:DefinedTerm
186 Nda216d1583e34670bf8f9856eb62a6f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Osteoporotic Fractures
188 rdf:type schema:DefinedTerm
189 Ndb33ce5f323d40e398c7ed5593e51752 schema:volumeNumber 42
190 rdf:type schema:PublicationVolume
191 Nde640a22c1ae46e98cf691bcca5a6df2 rdf:first sg:person.0726363743.71
192 rdf:rest N19f138c18d8841a5868763f18148b455
193 Neac7138b8bd94a369e93d5abce6cc61b schema:name pubmed_id
194 schema:value 29916137
195 rdf:type schema:PropertyValue
196 Neb0286e8503c4e60b0dde7985e3d7fe4 rdf:first sg:person.01153222626.82
197 rdf:rest rdf:nil
198 Nf6eaafb285e14b3dab32147fab515ee5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Biomarkers
200 rdf:type schema:DefinedTerm
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
205 schema:name Clinical Sciences
206 rdf:type schema:DefinedTerm
207 sg:journal.1088396 schema:issn 0391-4097
208 1720-8386
209 schema:name Journal of Endocrinological Investigation
210 schema:publisher Springer Nature
211 rdf:type schema:Periodical
212 sg:person.01037447456.03 schema:affiliation grid-institutes:grid.7841.a
213 schema:familyName Romagnoli
214 schema:givenName E.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037447456.03
216 rdf:type schema:Person
217 sg:person.01131756324.77 schema:affiliation grid-institutes:grid.437533.5
218 schema:familyName Nieddu
219 schema:givenName L.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131756324.77
221 rdf:type schema:Person
222 sg:person.01153222626.82 schema:affiliation grid-institutes:grid.7841.a
223 schema:familyName Morano
224 schema:givenName S.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153222626.82
226 rdf:type schema:Person
227 sg:person.01276450542.25 schema:affiliation grid-institutes:grid.7841.a
228 schema:familyName Lenzi
229 schema:givenName A.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276450542.25
231 rdf:type schema:Person
232 sg:person.01301603122.03 schema:affiliation grid-institutes:grid.6530.0
233 schema:familyName Massoud
234 schema:givenName R.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301603122.03
236 rdf:type schema:Person
237 sg:person.015100527327.16 schema:affiliation grid-institutes:grid.6530.0
238 schema:familyName Russo
239 schema:givenName C.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100527327.16
241 rdf:type schema:Person
242 sg:person.0626515567.91 schema:affiliation grid-institutes:grid.7841.a
243 schema:familyName Turinese
244 schema:givenName I.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626515567.91
246 rdf:type schema:Person
247 sg:person.0646444335.69 schema:affiliation grid-institutes:grid.7841.a
248 schema:familyName Filardi
249 schema:givenName T.
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646444335.69
251 rdf:type schema:Person
252 sg:person.0655360602.32 schema:affiliation grid-institutes:grid.413503.0
253 schema:familyName Carnevale
254 schema:givenName V.
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655360602.32
256 rdf:type schema:Person
257 sg:person.0726363743.71 schema:affiliation grid-institutes:grid.7841.a
258 schema:familyName Tavaglione
259 schema:givenName F.
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726363743.71
261 rdf:type schema:Person
262 sg:pub.10.1007/s00198-006-0253-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022229581
263 https://doi.org/10.1007/s00198-006-0253-4
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s00198-015-3279-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044606988
266 https://doi.org/10.1007/s00198-015-3279-7
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s11745-010-3513-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002765224
269 https://doi.org/10.1007/s11745-010-3513-1
270 rdf:type schema:CreativeWork
271 grid-institutes:grid.413503.0 schema:alternateName Unit of Internal Medicine, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
272 schema:name Unit of Internal Medicine, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
273 rdf:type schema:Organization
274 grid-institutes:grid.437533.5 schema:alternateName Faculty of Economics, UNINT University, Rome, Italy
275 schema:name Faculty of Economics, UNINT University, Rome, Italy
276 rdf:type schema:Organization
277 grid-institutes:grid.6530.0 schema:alternateName Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
278 schema:name Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
279 rdf:type schema:Organization
280 grid-institutes:grid.7841.a schema:alternateName Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
281 Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
282 schema:name Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
283 Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
284 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...