Remarks on the Bohr-torsion topology of a locally compact Abelian group View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

F. Javier Trigos-Arrieta

ABSTRACT

Denote by Tthe torus,i.e., the topological group consisting of the complex numbers of modulus 1 under multiplication. Every topological Abelian group (G, t) has associated a weaker topological group topology, denoted by t+, defined as the weakest topology on G that makes the t-continuous homomorphisms (t-characters) ϕ:G→T continuous. The topology t+ is called the Bohr topology on (G, t). Let T denote the torsion subgroup of T. Then the weakest topology that makes the t-characters ϕ:G→T continuous is called the Bohr-torsion topology on (G, t) and is denoted by t⊕. When t is locally compact, we show that t⊕ is Hausdorff if and only if (G, t) is zero dimensional, and if (G, t) is zero dimensional and H is a subgroup of G, then H is t-closed if and only if H is t⊕-closed. More... »

PAGES

373-380

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40590-017-0161-y

DOI

http://dx.doi.org/10.1007/s40590-017-0161-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083894346


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California State University, Bakersfield", 
          "id": "https://www.grid.ac/institutes/grid.253553.7", 
          "name": [
            "Department of Mathematics, California State University, Bakersfield, 93311, Bakersfield, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trigos-Arrieta", 
        "givenName": "F. Javier", 
        "id": "sg:person.015025701663.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015025701663.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.topol.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018434336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-8641(90)90008-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039607436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1705-1_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089736759", 
          "https://doi.org/10.1007/978-1-4757-1705-1_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-86580-9.50027-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090238616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/fm-55-3-283-291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091702904"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "Denote by Tthe torus,i.e., the topological group consisting of the complex numbers of modulus 1 under multiplication. Every topological Abelian group (G, t) has associated a weaker topological group topology, denoted by t+, defined as the weakest topology on G that makes the t-continuous homomorphisms (t-characters) \u03d5:G\u2192T continuous. The topology t+ is called the Bohr topology on (G, t). Let T denote the torsion subgroup of T. Then the weakest topology that makes the t-characters \u03d5:G\u2192T continuous is called the Bohr-torsion topology on (G, t) and is denoted by t\u2295. When t is locally compact, we show that t\u2295 is Hausdorff if and only if (G, t) is zero dimensional, and if (G, t) is zero dimensional and H is a subgroup of G, then H is t-closed if and only if H is t\u2295-closed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40590-017-0161-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050408", 
        "issn": [
          "0037-8615", 
          "2296-4495"
        ], 
        "name": "Bolet\u00edn de la Sociedad Matem\u00e1tica Mexicana", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Remarks on the Bohr-torsion topology of a locally compact Abelian group", 
    "pagination": "373-380", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8886fe1086d2f3827a30f783a4b63267602913ebab93cb24e821c6766a90557a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40590-017-0161-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083894346"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40590-017-0161-y", 
      "https://app.dimensions.ai/details/publication/pub.1083894346"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000525.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs40590-017-0161-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40590-017-0161-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40590-017-0161-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40590-017-0161-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40590-017-0161-y'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40590-017-0161-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N241474c12af34ceeb2ab7830c58479bc
4 schema:citation sg:pub.10.1007/978-1-4757-1705-1_27
5 https://doi.org/10.1016/0166-8641(90)90008-p
6 https://doi.org/10.1016/b978-0-444-86580-9.50027-6
7 https://doi.org/10.1016/j.topol.2013.10.004
8 https://doi.org/10.4064/fm-55-3-283-291
9 schema:datePublished 2018-10
10 schema:datePublishedReg 2018-10-01
11 schema:description Denote by Tthe torus,i.e., the topological group consisting of the complex numbers of modulus 1 under multiplication. Every topological Abelian group (G, t) has associated a weaker topological group topology, denoted by t+, defined as the weakest topology on G that makes the t-continuous homomorphisms (t-characters) ϕ:G→T continuous. The topology t+ is called the Bohr topology on (G, t). Let T denote the torsion subgroup of T. Then the weakest topology that makes the t-characters ϕ:G→T continuous is called the Bohr-torsion topology on (G, t) and is denoted by t⊕. When t is locally compact, we show that t⊕ is Hausdorff if and only if (G, t) is zero dimensional, and if (G, t) is zero dimensional and H is a subgroup of G, then H is t-closed if and only if H is t⊕-closed.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Na4f7b12993a24db4b1d18361c68b8db6
16 Nfe6098180bae46acb085f7c5d0a64c88
17 sg:journal.1050408
18 schema:name Remarks on the Bohr-torsion topology of a locally compact Abelian group
19 schema:pagination 373-380
20 schema:productId N4d0934ab13c249be9e561e5afb20bd15
21 N5e041197e3e04bd88ca5f163b8863a1c
22 N93ced30ba7af4025844fa0991b16a157
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083894346
24 https://doi.org/10.1007/s40590-017-0161-y
25 schema:sdDatePublished 2019-04-11T02:11
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Na32f8838a6c84d0b9843c704245e49d1
28 schema:url http://link.springer.com/10.1007%2Fs40590-017-0161-y
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N241474c12af34ceeb2ab7830c58479bc rdf:first sg:person.015025701663.94
33 rdf:rest rdf:nil
34 N4d0934ab13c249be9e561e5afb20bd15 schema:name dimensions_id
35 schema:value pub.1083894346
36 rdf:type schema:PropertyValue
37 N5e041197e3e04bd88ca5f163b8863a1c schema:name doi
38 schema:value 10.1007/s40590-017-0161-y
39 rdf:type schema:PropertyValue
40 N93ced30ba7af4025844fa0991b16a157 schema:name readcube_id
41 schema:value 8886fe1086d2f3827a30f783a4b63267602913ebab93cb24e821c6766a90557a
42 rdf:type schema:PropertyValue
43 Na32f8838a6c84d0b9843c704245e49d1 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Na4f7b12993a24db4b1d18361c68b8db6 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 Nfe6098180bae46acb085f7c5d0a64c88 schema:volumeNumber 24
48 rdf:type schema:PublicationVolume
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1050408 schema:issn 0037-8615
56 2296-4495
57 schema:name Boletín de la Sociedad Matemática Mexicana
58 rdf:type schema:Periodical
59 sg:person.015025701663.94 schema:affiliation https://www.grid.ac/institutes/grid.253553.7
60 schema:familyName Trigos-Arrieta
61 schema:givenName F. Javier
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015025701663.94
63 rdf:type schema:Person
64 sg:pub.10.1007/978-1-4757-1705-1_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089736759
65 https://doi.org/10.1007/978-1-4757-1705-1_27
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1016/0166-8641(90)90008-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1039607436
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1016/b978-0-444-86580-9.50027-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090238616
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/j.topol.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018434336
72 rdf:type schema:CreativeWork
73 https://doi.org/10.4064/fm-55-3-283-291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091702904
74 rdf:type schema:CreativeWork
75 https://www.grid.ac/institutes/grid.253553.7 schema:alternateName California State University, Bakersfield
76 schema:name Department of Mathematics, California State University, Bakersfield, 93311, Bakersfield, CA, USA
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...