Studienerfolgsprognose bei Erstsemesterstudierenden in Chemie View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09-03

AUTHORS

Katja Freyer, Matthias Epple, Matthias Brand, Johannes Schiebener, Elke Sumfleth

ABSTRACT

In a study on 165 freshmen of different courses of study, student success in chemistry is predicted by multiple linear regression analysis. Student success is defined as the score in the exam in General Chemistry at the end of the first semester. Significant predictors for student success are prior domain-specific knowledge, cognitive abilities, subject interest and course of study whereas the desired subject is not. With the regression model only 28.5 % of variance can be explained. With the help of additional moderation analyses, interactions between all variables can be observed. Thereby, desired subject plays an important role. By adding the interaction terms to the regression model, the explained variance can be increased to 38.6 %. More... »

PAGES

129-142

References to SciGraph publications

  • 2009-12. Vergleichbarkeit von Abiturleistungen in ZEITSCHRIFT FÜR ERZIEHUNGSWISSENSCHAFT
  • 2011-11-18. Adjustment to College as Measured by the Student Adaptation to College Questionnaire: A Quantitative Review of its Structure and Relationships with Correlates and Consequences in EDUCATIONAL PSYCHOLOGY REVIEW
  • 1990. Expert Knowledge, General Abilities, and Text Processing in INTERACTIONS AMONG APTITUDES, STRATEGIES, AND KNOWLEDGE IN COGNITIVE PERFORMANCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3

    DOI

    http://dx.doi.org/10.1007/s40573-014-0015-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041809472


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Freyer", 
            "givenName": "Katja", 
            "id": "sg:person.011443032313.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011443032313.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Epple", 
            "givenName": "Matthias", 
            "id": "sg:person.011342402346.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Ingenieurwissenschaften, Universit\u00e4t Duisburg-Essen, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Ingenieurwissenschaften, Universit\u00e4t Duisburg-Essen, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brand", 
            "givenName": "Matthias", 
            "id": "sg:person.01355365262.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355365262.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Ingenieurwissenschaften, Universit\u00e4t Duisburg-Essen, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Ingenieurwissenschaften, Universit\u00e4t Duisburg-Essen, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schiebener", 
            "givenName": "Johannes", 
            "id": "sg:person.01023746630.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023746630.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sumfleth", 
            "givenName": "Elke", 
            "id": "sg:person.011331316453.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331316453.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10648-011-9184-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047983462", 
              "https://doi.org/10.1007/s10648-011-9184-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-3268-1_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004393366", 
              "https://doi.org/10.1007/978-1-4612-3268-1_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11618-009-0099-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017878403", 
              "https://doi.org/10.1007/s11618-009-0099-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-09-03", 
        "datePublishedReg": "2014-09-03", 
        "description": "In a study on 165 freshmen of different courses of study, student success in chemistry is predicted by multiple linear regression analysis. Student success is defined as the score in the exam in General Chemistry at the end of the first semester. Significant predictors for student success are prior domain-specific knowledge, cognitive abilities, subject interest and course of study whereas the desired subject is not. With the regression model only 28.5\u00a0% of variance can be explained. With the help of additional moderation analyses, interactions between all variables can be observed. Thereby, desired subject plays an important role. By adding the interaction terms to the regression model, the explained variance can be increased to 38.6\u00a0%.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40573-014-0015-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136599", 
            "issn": [
              "0949-1147", 
              "2197-988X"
            ], 
            "name": "Zeitschrift f\u00fcr Didaktik der Naturwissenschaften", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "general chemistry", 
          "chemistry", 
          "Chemie", 
          "student success", 
          "interaction", 
          "prior domain-specific knowledge", 
          "course of study", 
          "analysis", 
          "first semester", 
          "regression models", 
          "important role", 
          "study", 
          "different courses", 
          "subject interest", 
          "domain-specific knowledge", 
          "ability", 
          "interest", 
          "interaction terms", 
          "course", 
          "success", 
          "semester", 
          "cognitive abilities", 
          "freshmen", 
          "multiple linear regression analysis", 
          "exam", 
          "model", 
          "moderation analysis", 
          "regression analysis", 
          "significant predictors", 
          "help", 
          "variables", 
          "role", 
          "terms", 
          "knowledge", 
          "subjects", 
          "variance", 
          "linear regression analysis", 
          "scores", 
          "end", 
          "predictors", 
          "Additional moderation analyses"
        ], 
        "name": "Studienerfolgsprognose bei Erstsemesterstudierenden in Chemie", 
        "pagination": "129-142", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041809472"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40573-014-0015-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40573-014-0015-3", 
          "https://app.dimensions.ai/details/publication/pub.1041809472"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_642.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40573-014-0015-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      21 PREDICATES      68 URIs      57 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40573-014-0015-3 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nefa3a12f8bf740008cdbf899b89d9d5c
    4 schema:citation sg:pub.10.1007/978-1-4612-3268-1_17
    5 sg:pub.10.1007/s10648-011-9184-5
    6 sg:pub.10.1007/s11618-009-0099-6
    7 schema:datePublished 2014-09-03
    8 schema:datePublishedReg 2014-09-03
    9 schema:description In a study on 165 freshmen of different courses of study, student success in chemistry is predicted by multiple linear regression analysis. Student success is defined as the score in the exam in General Chemistry at the end of the first semester. Significant predictors for student success are prior domain-specific knowledge, cognitive abilities, subject interest and course of study whereas the desired subject is not. With the regression model only 28.5 % of variance can be explained. With the help of additional moderation analyses, interactions between all variables can be observed. Thereby, desired subject plays an important role. By adding the interaction terms to the regression model, the explained variance can be increased to 38.6 %.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Na5d94b800af0480cbeab8cfa866b1c11
    13 Ne2a6303b98de48d6a6a21d653fe63cd5
    14 sg:journal.1136599
    15 schema:keywords Additional moderation analyses
    16 Chemie
    17 ability
    18 analysis
    19 chemistry
    20 cognitive abilities
    21 course
    22 course of study
    23 different courses
    24 domain-specific knowledge
    25 end
    26 exam
    27 first semester
    28 freshmen
    29 general chemistry
    30 help
    31 important role
    32 interaction
    33 interaction terms
    34 interest
    35 knowledge
    36 linear regression analysis
    37 model
    38 moderation analysis
    39 multiple linear regression analysis
    40 predictors
    41 prior domain-specific knowledge
    42 regression analysis
    43 regression models
    44 role
    45 scores
    46 semester
    47 significant predictors
    48 student success
    49 study
    50 subject interest
    51 subjects
    52 success
    53 terms
    54 variables
    55 variance
    56 schema:name Studienerfolgsprognose bei Erstsemesterstudierenden in Chemie
    57 schema:pagination 129-142
    58 schema:productId N00f039c5c2dc4ad498448c1ffaac9b5c
    59 Ne30ee6b647704536bb53682ca0f23234
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041809472
    61 https://doi.org/10.1007/s40573-014-0015-3
    62 schema:sdDatePublished 2022-10-01T06:40
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher Nf52fd5f33a0d4cdebd694d01c20e635c
    65 schema:url https://doi.org/10.1007/s40573-014-0015-3
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N00f039c5c2dc4ad498448c1ffaac9b5c schema:name doi
    70 schema:value 10.1007/s40573-014-0015-3
    71 rdf:type schema:PropertyValue
    72 N93b7b627b16c4ea3adebc78005a543f7 rdf:first sg:person.01355365262.38
    73 rdf:rest Ncacaa3c319784a5d881b405fe89693df
    74 Na5d94b800af0480cbeab8cfa866b1c11 schema:volumeNumber 20
    75 rdf:type schema:PublicationVolume
    76 Nb980e14d079d40f19f68a93abb6facbc rdf:first sg:person.011331316453.99
    77 rdf:rest rdf:nil
    78 Ncacaa3c319784a5d881b405fe89693df rdf:first sg:person.01023746630.37
    79 rdf:rest Nb980e14d079d40f19f68a93abb6facbc
    80 Ne2a6303b98de48d6a6a21d653fe63cd5 schema:issueNumber 1
    81 rdf:type schema:PublicationIssue
    82 Ne30ee6b647704536bb53682ca0f23234 schema:name dimensions_id
    83 schema:value pub.1041809472
    84 rdf:type schema:PropertyValue
    85 Nefa3a12f8bf740008cdbf899b89d9d5c rdf:first sg:person.011443032313.74
    86 rdf:rest Nf5c1b2a155a74794b11c5b532904a9d6
    87 Nf52fd5f33a0d4cdebd694d01c20e635c schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 Nf5c1b2a155a74794b11c5b532904a9d6 rdf:first sg:person.011342402346.80
    90 rdf:rest N93b7b627b16c4ea3adebc78005a543f7
    91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Chemical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Physical Chemistry (incl. Structural)
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1136599 schema:issn 0949-1147
    98 2197-988X
    99 schema:name Zeitschrift für Didaktik der Naturwissenschaften
    100 schema:publisher Springer Nature
    101 rdf:type schema:Periodical
    102 sg:person.01023746630.37 schema:affiliation grid-institutes:grid.5718.b
    103 schema:familyName Schiebener
    104 schema:givenName Johannes
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023746630.37
    106 rdf:type schema:Person
    107 sg:person.011331316453.99 schema:affiliation grid-institutes:grid.5718.b
    108 schema:familyName Sumfleth
    109 schema:givenName Elke
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331316453.99
    111 rdf:type schema:Person
    112 sg:person.011342402346.80 schema:affiliation grid-institutes:grid.5718.b
    113 schema:familyName Epple
    114 schema:givenName Matthias
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80
    116 rdf:type schema:Person
    117 sg:person.011443032313.74 schema:affiliation grid-institutes:grid.5718.b
    118 schema:familyName Freyer
    119 schema:givenName Katja
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011443032313.74
    121 rdf:type schema:Person
    122 sg:person.01355365262.38 schema:affiliation grid-institutes:grid.5718.b
    123 schema:familyName Brand
    124 schema:givenName Matthias
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355365262.38
    126 rdf:type schema:Person
    127 sg:pub.10.1007/978-1-4612-3268-1_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004393366
    128 https://doi.org/10.1007/978-1-4612-3268-1_17
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s10648-011-9184-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047983462
    131 https://doi.org/10.1007/s10648-011-9184-5
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s11618-009-0099-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017878403
    134 https://doi.org/10.1007/s11618-009-0099-6
    135 rdf:type schema:CreativeWork
    136 grid-institutes:grid.5718.b schema:alternateName Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Deutschland
    137 Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen, Essen, Deutschland
    138 schema:name Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Deutschland
    139 Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen, Essen, Deutschland
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...