Studienerfolgsprognose bei Erstsemesterstudierenden in Chemie View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09-03

AUTHORS

Katja Freyer, Matthias Epple, Matthias Brand, Johannes Schiebener, Elke Sumfleth

ABSTRACT

In a study on 165 freshmen of different courses of study, student success in chemistry is predicted by multiple linear regression analysis. Student success is defined as the score in the exam in General Chemistry at the end of the first semester. Significant predictors for student success are prior domain-specific knowledge, cognitive abilities, subject interest and course of study whereas the desired subject is not. With the regression model only 28.5 % of variance can be explained. With the help of additional moderation analyses, interactions between all variables can be observed. Thereby, desired subject plays an important role. By adding the interaction terms to the regression model, the explained variance can be increased to 38.6 %. More... »

PAGES

129-142

References to SciGraph publications

  • 2009-12. Vergleichbarkeit von Abiturleistungen in ZEITSCHRIFT FÜR ERZIEHUNGSWISSENSCHAFT
  • 2011-11-18. Adjustment to College as Measured by the Student Adaptation to College Questionnaire: A Quantitative Review of its Structure and Relationships with Correlates and Consequences in EDUCATIONAL PSYCHOLOGY REVIEW
  • 1990. Expert Knowledge, General Abilities, and Text Processing in INTERACTIONS AMONG APTITUDES, STRATEGIES, AND KNOWLEDGE IN COGNITIVE PERFORMANCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3

    DOI

    http://dx.doi.org/10.1007/s40573-014-0015-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041809472


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Freyer", 
            "givenName": "Katja", 
            "id": "sg:person.011443032313.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011443032313.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Epple", 
            "givenName": "Matthias", 
            "id": "sg:person.011342402346.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Ingenieurwissenschaften, Universit\u00e4t Duisburg-Essen, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Ingenieurwissenschaften, Universit\u00e4t Duisburg-Essen, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brand", 
            "givenName": "Matthias", 
            "id": "sg:person.01355365262.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355365262.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Ingenieurwissenschaften, Universit\u00e4t Duisburg-Essen, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Ingenieurwissenschaften, Universit\u00e4t Duisburg-Essen, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schiebener", 
            "givenName": "Johannes", 
            "id": "sg:person.01023746630.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023746630.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fakult\u00e4t f\u00fcr Chemie, Universit\u00e4t Duisburg-Essen, Universit\u00e4tsstr. 5-7, 45117, Essen, Deutschland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sumfleth", 
            "givenName": "Elke", 
            "id": "sg:person.011331316453.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331316453.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11618-009-0099-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017878403", 
              "https://doi.org/10.1007/s11618-009-0099-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10648-011-9184-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047983462", 
              "https://doi.org/10.1007/s10648-011-9184-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-3268-1_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004393366", 
              "https://doi.org/10.1007/978-1-4612-3268-1_17"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-09-03", 
        "datePublishedReg": "2014-09-03", 
        "description": "In a study on 165 freshmen of different courses of study, student success in chemistry is predicted by multiple linear regression analysis. Student success is defined as the score in the exam in General Chemistry at the end of the first semester. Significant predictors for student success are prior domain-specific knowledge, cognitive abilities, subject interest and course of study whereas the desired subject is not. With the regression model only 28.5\u00a0% of variance can be explained. With the help of additional moderation analyses, interactions between all variables can be observed. Thereby, desired subject plays an important role. By adding the interaction terms to the regression model, the explained variance can be increased to 38.6\u00a0%.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40573-014-0015-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136599", 
            "issn": [
              "0949-1147", 
              "2197-988X"
            ], 
            "name": "Zeitschrift f\u00fcr Didaktik der Naturwissenschaften", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "general chemistry", 
          "chemistry", 
          "Chemie", 
          "student success", 
          "interaction", 
          "prior domain-specific knowledge", 
          "course of study", 
          "analysis", 
          "first semester", 
          "regression models", 
          "important role", 
          "study", 
          "different courses", 
          "subject interest", 
          "domain-specific knowledge", 
          "ability", 
          "interest", 
          "interaction terms", 
          "course", 
          "success", 
          "semester", 
          "cognitive abilities", 
          "freshmen", 
          "multiple linear regression analysis", 
          "exam", 
          "model", 
          "moderation analysis", 
          "regression analysis", 
          "significant predictors", 
          "help", 
          "variables", 
          "role", 
          "terms", 
          "knowledge", 
          "subjects", 
          "variance", 
          "linear regression analysis", 
          "scores", 
          "end", 
          "predictors", 
          "Additional moderation analyses"
        ], 
        "name": "Studienerfolgsprognose bei Erstsemesterstudierenden in Chemie", 
        "pagination": "129-142", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041809472"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40573-014-0015-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40573-014-0015-3", 
          "https://app.dimensions.ai/details/publication/pub.1041809472"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_627.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40573-014-0015-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40573-014-0015-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      21 PREDICATES      68 URIs      57 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40573-014-0015-3 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Na9f05498bafd42cfa642ceeca20dc708
    4 schema:citation sg:pub.10.1007/978-1-4612-3268-1_17
    5 sg:pub.10.1007/s10648-011-9184-5
    6 sg:pub.10.1007/s11618-009-0099-6
    7 schema:datePublished 2014-09-03
    8 schema:datePublishedReg 2014-09-03
    9 schema:description In a study on 165 freshmen of different courses of study, student success in chemistry is predicted by multiple linear regression analysis. Student success is defined as the score in the exam in General Chemistry at the end of the first semester. Significant predictors for student success are prior domain-specific knowledge, cognitive abilities, subject interest and course of study whereas the desired subject is not. With the regression model only 28.5 % of variance can be explained. With the help of additional moderation analyses, interactions between all variables can be observed. Thereby, desired subject plays an important role. By adding the interaction terms to the regression model, the explained variance can be increased to 38.6 %.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Ne8eb12c82d5b4f909b5ae79711f100f3
    13 Nfa6dee3f9d3446149324566dd4de8b0e
    14 sg:journal.1136599
    15 schema:keywords Additional moderation analyses
    16 Chemie
    17 ability
    18 analysis
    19 chemistry
    20 cognitive abilities
    21 course
    22 course of study
    23 different courses
    24 domain-specific knowledge
    25 end
    26 exam
    27 first semester
    28 freshmen
    29 general chemistry
    30 help
    31 important role
    32 interaction
    33 interaction terms
    34 interest
    35 knowledge
    36 linear regression analysis
    37 model
    38 moderation analysis
    39 multiple linear regression analysis
    40 predictors
    41 prior domain-specific knowledge
    42 regression analysis
    43 regression models
    44 role
    45 scores
    46 semester
    47 significant predictors
    48 student success
    49 study
    50 subject interest
    51 subjects
    52 success
    53 terms
    54 variables
    55 variance
    56 schema:name Studienerfolgsprognose bei Erstsemesterstudierenden in Chemie
    57 schema:pagination 129-142
    58 schema:productId Nb90e9ffcd3eb432aa29b11c604a4b18e
    59 Nd10dfc4edce2457e90f1c34558a50026
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041809472
    61 https://doi.org/10.1007/s40573-014-0015-3
    62 schema:sdDatePublished 2022-12-01T06:31
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N6216c64b7d6a476e92acc7c615478e3e
    65 schema:url https://doi.org/10.1007/s40573-014-0015-3
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N6216c64b7d6a476e92acc7c615478e3e schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 N628bfbaae9264c969f3cfa5594d65e06 rdf:first sg:person.01023746630.37
    72 rdf:rest N9cd0a0ea87a24628a6a0019d6b0c4f70
    73 N9cd0a0ea87a24628a6a0019d6b0c4f70 rdf:first sg:person.011331316453.99
    74 rdf:rest rdf:nil
    75 Na7440ea76bad48fe918dd2efaca180b3 rdf:first sg:person.01355365262.38
    76 rdf:rest N628bfbaae9264c969f3cfa5594d65e06
    77 Na9f05498bafd42cfa642ceeca20dc708 rdf:first sg:person.011443032313.74
    78 rdf:rest Nfce8aa6a070d46f698e0852eec710660
    79 Nb90e9ffcd3eb432aa29b11c604a4b18e schema:name dimensions_id
    80 schema:value pub.1041809472
    81 rdf:type schema:PropertyValue
    82 Nd10dfc4edce2457e90f1c34558a50026 schema:name doi
    83 schema:value 10.1007/s40573-014-0015-3
    84 rdf:type schema:PropertyValue
    85 Ne8eb12c82d5b4f909b5ae79711f100f3 schema:volumeNumber 20
    86 rdf:type schema:PublicationVolume
    87 Nfa6dee3f9d3446149324566dd4de8b0e schema:issueNumber 1
    88 rdf:type schema:PublicationIssue
    89 Nfce8aa6a070d46f698e0852eec710660 rdf:first sg:person.011342402346.80
    90 rdf:rest Na7440ea76bad48fe918dd2efaca180b3
    91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Chemical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Physical Chemistry (incl. Structural)
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1136599 schema:issn 0949-1147
    98 2197-988X
    99 schema:name Zeitschrift für Didaktik der Naturwissenschaften
    100 schema:publisher Springer Nature
    101 rdf:type schema:Periodical
    102 sg:person.01023746630.37 schema:affiliation grid-institutes:grid.5718.b
    103 schema:familyName Schiebener
    104 schema:givenName Johannes
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023746630.37
    106 rdf:type schema:Person
    107 sg:person.011331316453.99 schema:affiliation grid-institutes:grid.5718.b
    108 schema:familyName Sumfleth
    109 schema:givenName Elke
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331316453.99
    111 rdf:type schema:Person
    112 sg:person.011342402346.80 schema:affiliation grid-institutes:grid.5718.b
    113 schema:familyName Epple
    114 schema:givenName Matthias
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80
    116 rdf:type schema:Person
    117 sg:person.011443032313.74 schema:affiliation grid-institutes:grid.5718.b
    118 schema:familyName Freyer
    119 schema:givenName Katja
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011443032313.74
    121 rdf:type schema:Person
    122 sg:person.01355365262.38 schema:affiliation grid-institutes:grid.5718.b
    123 schema:familyName Brand
    124 schema:givenName Matthias
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355365262.38
    126 rdf:type schema:Person
    127 sg:pub.10.1007/978-1-4612-3268-1_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004393366
    128 https://doi.org/10.1007/978-1-4612-3268-1_17
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s10648-011-9184-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047983462
    131 https://doi.org/10.1007/s10648-011-9184-5
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s11618-009-0099-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017878403
    134 https://doi.org/10.1007/s11618-009-0099-6
    135 rdf:type schema:CreativeWork
    136 grid-institutes:grid.5718.b schema:alternateName Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Deutschland
    137 Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen, Essen, Deutschland
    138 schema:name Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Deutschland
    139 Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen, Essen, Deutschland
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...