On the contact treatment of non-convex particles in the granular element method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09

AUTHORS

Keng-Wit Lim, Kristian Krabbenhoft, José E. Andrade

ABSTRACT

We present a new contact algorithm that endows the granular element method [1] with the ability to model non-convex particles using non-uniform rational basis splines. This significant extension allows for the representation of particle morphological features, namely, sphericity and angularity, to their fullest extent, with local contact rolling resistance and interlocking emanating directly from grain geometry. Both particle elasticity and friction at the contact level are treated implicitly and simultaneously, and the contact algorithm is cast into a mathematical programming-based contact dynamics framework. The framework provides the advantages of implicit time integrators (for e.g., stability and larger time steps) and ability to handle both rigid and highly stiff particles. By allowing for particle non-convexity, modeling flexibility is significantly enhanced, to a level that is comparable with isogeometric methods. As such, the transition from image data to particle shapes is greatly streamlined. More importantly, increased macroscopic strength in granular packings comprising of non-convex particles is fully captured. All the above capabilities are achieved under a very modest implementation effort. More... »

PAGES

257-275

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40571-014-0019-2

DOI

http://dx.doi.org/10.1007/s40571-014-0019-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052438686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of Engineering & Applied Science, California Institute of Technology, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Keng-Wit", 
        "id": "sg:person.010106277245.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106277245.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "Centre for Geotechnical & Materials Modelling, University of Newcastle, 2308, Callaghan, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krabbenhoft", 
        "givenName": "Kristian", 
        "id": "sg:person.01310716602.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310716602.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of Engineering & Applied Science, California Institute of Technology, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andrade", 
        "givenName": "Jos\u00e9 E.", 
        "id": "sg:person.016664150723.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016664150723.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2008jb005986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003052890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008jb005986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003052890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2009.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005637313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2010.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006231627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-012-0360-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006367210", 
          "https://doi.org/10.1007/s10035-012-0360-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1010505707", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59223-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010505707", 
          "https://doi.org/10.1007/978-3-642-59223-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59223-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010505707", 
          "https://doi.org/10.1007/978-3-642-59223-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2004.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9045(72)90080-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014359977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268977700101761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019311788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2008.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019669328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023060957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2012.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023148325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.021304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024732308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.021304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024732308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556789908805766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025100660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.021301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027396868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.021301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027396868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2012.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030603424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0098-3004(00)00116-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033450915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2005.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035593412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2005.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035593412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035676494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035676494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02644400610689884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037171301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.054302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038155050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.054302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038155050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.178001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038280855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.178001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038280855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-010-9184-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038951965", 
          "https://doi.org/10.1007/s10596-010-9184-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-010-9184-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038951965", 
          "https://doi.org/10.1007/s10596-010-9184-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1028174.971420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044536938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.2203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046326449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1484(199704)2:2<121::aid-cfm27>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047877382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1484(199704)2:2<121::aid-cfm27>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047877382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(88)92293-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048889673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(88)92293-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048889673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-31761-9_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050446100", 
          "https://doi.org/10.1007/3-540-31761-9_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/293701.293719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050878815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057619230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/10.2.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.021304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.021304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.061303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.061303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.041302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060742542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.041302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060742542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.051307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.051307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s00361445024180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s00361445024180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/gtj11051j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067615755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geolett.12.00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068208037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.2004.54.8.539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068211462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.2010.60.5.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068211935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.8.t.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068212132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555847"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "We present a new contact algorithm that endows the granular element method [1] with the ability to model non-convex particles using non-uniform rational basis splines. This significant extension allows for the representation of particle morphological features, namely, sphericity and angularity, to their fullest extent, with local contact rolling resistance and interlocking emanating directly from grain geometry. Both particle elasticity and friction at the contact level are treated implicitly and simultaneously, and the contact algorithm is cast into a mathematical programming-based contact dynamics framework. The framework provides the advantages of implicit time integrators (for e.g., stability and larger time steps) and ability to handle both rigid and highly stiff particles. By allowing for particle non-convexity, modeling flexibility is significantly enhanced, to a level that is comparable with isogeometric methods. As such, the transition from image data to particle shapes is greatly streamlined. More importantly, increased macroscopic strength in granular packings comprising of non-convex particles is fully captured. All the above capabilities are achieved under a very modest implementation effort.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40571-014-0019-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052236", 
        "issn": [
          "2196-4378", 
          "2196-4386"
        ], 
        "name": "Computational Particle Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "On the contact treatment of non-convex particles in the granular element method", 
    "pagination": "257-275", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9c85b03249b80e6eb1d8b4a7a8b9a40cabd5f9e4a99e057edbccebe5bd8b566"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40571-014-0019-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052438686"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40571-014-0019-2", 
      "https://app.dimensions.ai/details/publication/pub.1052438686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs40571-014-0019-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40571-014-0019-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40571-014-0019-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40571-014-0019-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40571-014-0019-2'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40571-014-0019-2 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N2d2dcfa783374ecb9eab37f46c12680b
4 schema:citation sg:pub.10.1007/3-540-31761-9_44
5 sg:pub.10.1007/978-3-642-59223-2
6 sg:pub.10.1007/s10035-012-0360-1
7 sg:pub.10.1007/s10596-010-9184-4
8 https://app.dimensions.ai/details/publication/pub.1010505707
9 https://doi.org/10.1002/(sici)1099-1484(199704)2:2<121::aid-cfm27>3.0.co;2-2
10 https://doi.org/10.1002/nag.2203
11 https://doi.org/10.1002/nme.2669
12 https://doi.org/10.1016/0021-9045(72)90080-9
13 https://doi.org/10.1016/0148-9062(88)92293-0
14 https://doi.org/10.1016/j.cma.2004.10.008
15 https://doi.org/10.1016/j.cma.2010.11.020
16 https://doi.org/10.1016/j.cma.2012.06.012
17 https://doi.org/10.1016/j.cma.2013.10.004
18 https://doi.org/10.1016/j.compgeo.2009.03.001
19 https://doi.org/10.1016/j.compgeo.2012.08.007
20 https://doi.org/10.1016/j.conbuildmat.2005.08.013
21 https://doi.org/10.1016/j.partic.2008.07.009
22 https://doi.org/10.1016/s0098-3004(00)00116-3
23 https://doi.org/10.1029/2008jb005986
24 https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)
25 https://doi.org/10.1080/00268977700101761
26 https://doi.org/10.1080/10556789908805766
27 https://doi.org/10.1093/imamat/10.2.134
28 https://doi.org/10.1103/physreve.54.861
29 https://doi.org/10.1103/physreve.66.021301
30 https://doi.org/10.1103/physreve.72.021304
31 https://doi.org/10.1103/physreve.80.021304
32 https://doi.org/10.1103/physreve.81.061303
33 https://doi.org/10.1103/physreve.84.041302
34 https://doi.org/10.1103/physreve.85.051307
35 https://doi.org/10.1103/physrevlett.92.054302
36 https://doi.org/10.1103/physrevlett.94.178001
37 https://doi.org/10.1108/02644400610689884
38 https://doi.org/10.1137/1.9781611971453
39 https://doi.org/10.1137/s00361445024180
40 https://doi.org/10.1145/1028174.971420
41 https://doi.org/10.1145/293701.293719
42 https://doi.org/10.1520/gtj11051j
43 https://doi.org/10.1680/geolett.12.00023
44 https://doi.org/10.1680/geot.2004.54.8.539
45 https://doi.org/10.1680/geot.2010.60.5.315
46 https://doi.org/10.1680/geot.8.t.037
47 schema:datePublished 2014-09
48 schema:datePublishedReg 2014-09-01
49 schema:description We present a new contact algorithm that endows the granular element method [1] with the ability to model non-convex particles using non-uniform rational basis splines. This significant extension allows for the representation of particle morphological features, namely, sphericity and angularity, to their fullest extent, with local contact rolling resistance and interlocking emanating directly from grain geometry. Both particle elasticity and friction at the contact level are treated implicitly and simultaneously, and the contact algorithm is cast into a mathematical programming-based contact dynamics framework. The framework provides the advantages of implicit time integrators (for e.g., stability and larger time steps) and ability to handle both rigid and highly stiff particles. By allowing for particle non-convexity, modeling flexibility is significantly enhanced, to a level that is comparable with isogeometric methods. As such, the transition from image data to particle shapes is greatly streamlined. More importantly, increased macroscopic strength in granular packings comprising of non-convex particles is fully captured. All the above capabilities are achieved under a very modest implementation effort.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf Na199f4bec3734c44adbc87ba46505dc7
54 Naeffac78ad734226b5c0ad36a40c48fc
55 sg:journal.1052236
56 schema:name On the contact treatment of non-convex particles in the granular element method
57 schema:pagination 257-275
58 schema:productId N31fe4696f94947d48d0ed641d9ab91c0
59 N5b981d7b4667453bba7114d3dbe361bb
60 Nfdfae00de4c842e3ade54c20d2f3d55f
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052438686
62 https://doi.org/10.1007/s40571-014-0019-2
63 schema:sdDatePublished 2019-04-10T18:23
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nbde41b87ed284313acbe7d64db2589e2
66 schema:url http://link.springer.com/10.1007%2Fs40571-014-0019-2
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N2d2dcfa783374ecb9eab37f46c12680b rdf:first sg:person.010106277245.13
71 rdf:rest Nb3d74d37344549db85820ec900443527
72 N31fe4696f94947d48d0ed641d9ab91c0 schema:name doi
73 schema:value 10.1007/s40571-014-0019-2
74 rdf:type schema:PropertyValue
75 N5b981d7b4667453bba7114d3dbe361bb schema:name readcube_id
76 schema:value f9c85b03249b80e6eb1d8b4a7a8b9a40cabd5f9e4a99e057edbccebe5bd8b566
77 rdf:type schema:PropertyValue
78 Na199f4bec3734c44adbc87ba46505dc7 schema:issueNumber 3
79 rdf:type schema:PublicationIssue
80 Naeffac78ad734226b5c0ad36a40c48fc schema:volumeNumber 1
81 rdf:type schema:PublicationVolume
82 Nb3d74d37344549db85820ec900443527 rdf:first sg:person.01310716602.83
83 rdf:rest Nbfaaab61410a482383d60e821ac65de8
84 Nbde41b87ed284313acbe7d64db2589e2 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nbfaaab61410a482383d60e821ac65de8 rdf:first sg:person.016664150723.35
87 rdf:rest rdf:nil
88 Nfdfae00de4c842e3ade54c20d2f3d55f schema:name dimensions_id
89 schema:value pub.1052438686
90 rdf:type schema:PropertyValue
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
95 schema:name Resources Engineering and Extractive Metallurgy
96 rdf:type schema:DefinedTerm
97 sg:journal.1052236 schema:issn 2196-4378
98 2196-4386
99 schema:name Computational Particle Mechanics
100 rdf:type schema:Periodical
101 sg:person.010106277245.13 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
102 schema:familyName Lim
103 schema:givenName Keng-Wit
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106277245.13
105 rdf:type schema:Person
106 sg:person.01310716602.83 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
107 schema:familyName Krabbenhoft
108 schema:givenName Kristian
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310716602.83
110 rdf:type schema:Person
111 sg:person.016664150723.35 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
112 schema:familyName Andrade
113 schema:givenName José E.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016664150723.35
115 rdf:type schema:Person
116 sg:pub.10.1007/3-540-31761-9_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050446100
117 https://doi.org/10.1007/3-540-31761-9_44
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-642-59223-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010505707
120 https://doi.org/10.1007/978-3-642-59223-2
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10035-012-0360-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006367210
123 https://doi.org/10.1007/s10035-012-0360-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10596-010-9184-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038951965
126 https://doi.org/10.1007/s10596-010-9184-4
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1010505707 schema:CreativeWork
129 https://doi.org/10.1002/(sici)1099-1484(199704)2:2<121::aid-cfm27>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047877382
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/nag.2203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046326449
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/nme.2669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035676494
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0021-9045(72)90080-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014359977
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0148-9062(88)92293-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048889673
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.cma.2004.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649836
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cma.2010.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006231627
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cma.2012.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023148325
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cma.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023060957
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.compgeo.2009.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005637313
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.compgeo.2012.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030603424
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.conbuildmat.2005.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035593412
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.partic.2008.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019669328
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0098-3004(00)00116-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033450915
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1029/2008jb005986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003052890
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057619230
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/00268977700101761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019311788
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/10556789908805766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025100660
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/imamat/10.2.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684265
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physreve.54.861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720250
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physreve.66.021301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027396868
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreve.72.021304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024732308
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreve.80.021304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739333
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreve.81.061303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740613
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreve.84.041302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060742542
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreve.85.051307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060743416
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.92.054302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038155050
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.94.178001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038280855
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1108/02644400610689884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037171301
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1137/1.9781611971453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555847
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1137/s00361445024180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877800
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/1028174.971420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044536938
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1145/293701.293719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050878815
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1520/gtj11051j schema:sameAs https://app.dimensions.ai/details/publication/pub.1067615755
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1680/geolett.12.00023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068208037
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1680/geot.2004.54.8.539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211462
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1680/geot.2010.60.5.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211935
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1680/geot.8.t.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068212132
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
206 schema:name Division of Engineering & Applied Science, California Institute of Technology, 91125, Pasadena, CA, USA
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.266842.c schema:alternateName University of Newcastle Australia
209 schema:name Centre for Geotechnical & Materials Modelling, University of Newcastle, 2308, Callaghan, NSW, Australia
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...