Probabilistic load curtailment estimation using posterior probability model and twin support vector machine View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-21

AUTHORS

Rozhin Eskandarpour, Amin Khodaei

ABSTRACT

Estimating the potential load curtailments as a result of hurricane is of great significance in improving the emergency response and recovery of power grid. This paper proposes a three-step sequential method in identifying such load curtailments prior to hurricane. In the first step, a twin support vector machine (TWSVM) model is trained on path/intensity information of previous hurricanes to enable a deterministic outage state assessment of the grid components in response to upcoming events. The TWSVM model is specifically used as it is suitable for handling imbalanced datasets. In the second step, a posterior probability sigmoid model is trained on the obtained results to convert the deterministic results into probabilistic outage states. These outage states enable the formation of probability-weighted contingency scenarios. Finally, the obtained component outages are integrated into a load curtailment estimation model to determine the expected potential load curtailments in the grid. The simulation results, tested on the standard IEEE 118-bus system and based on synthetic datasets, illustrate the high accuracy performance of the proposed method. More... »

PAGES

665-675

References to SciGraph publications

  • 2012-03-13. An overview on twin support vector machines in ARTIFICIAL INTELLIGENCE REVIEW
  • 2009-05-27. TWin support tensor machines for MCs detection in JOURNAL OF ELECTRONICS (CHINA)
  • 2009. Several SVM Ensemble Methods Integrated with Under-Sampling for Imbalanced Data Learning in ADVANCED DATA MINING AND APPLICATIONS
  • 2006. z-SVM: An SVM for Improved Classification of Imbalanced Data in AI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE
  • 2001-09-20. Machine Learning Applications to Power Systems in MACHINE LEARNING AND ITS APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40565-019-0514-9

    DOI

    http://dx.doi.org/10.1007/s40565-019-0514-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112900890


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Denver,Department of Electrical and Computer Engineering,Denver,CO,USA,80208", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "University of Denver,Department of Electrical and Computer Engineering,Denver,CO,USA,80208"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eskandarpour", 
            "givenName": "Rozhin", 
            "id": "sg:person.015454673157.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015454673157.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Denver,Department of Electrical and Computer Engineering,Denver,CO,USA,80208", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "University of Denver,Department of Electrical and Computer Engineering,Denver,CO,USA,80208"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khodaei", 
            "givenName": "Amin", 
            "id": "sg:person.011322471527.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011322471527.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-03348-3_54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034432968", 
              "https://doi.org/10.1007/978-3-642-03348-3_54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11767-007-0211-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031787037", 
              "https://doi.org/10.1007/s11767-007-0211-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44673-7_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053016793", 
              "https://doi.org/10.1007/3-540-44673-7_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11941439_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033988291", 
              "https://doi.org/10.1007/11941439_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-012-9336-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025664220", 
              "https://doi.org/10.1007/s10462-012-9336-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-21", 
        "datePublishedReg": "2019-03-21", 
        "description": "Estimating the potential load curtailments as a result of hurricane is of great significance in improving the emergency response and recovery of power grid. This paper proposes a three-step sequential method in identifying such load curtailments prior to hurricane. In the first step, a twin support vector machine (TWSVM) model is trained on path/intensity information of previous hurricanes to enable a deterministic outage state assessment of the grid components in response to upcoming events. The TWSVM model is specifically used as it is suitable for handling imbalanced datasets. In the second step, a posterior probability sigmoid model is trained on the obtained results to convert the deterministic results into probabilistic outage states. These outage states enable the formation of probability-weighted contingency scenarios. Finally, the obtained component outages are integrated into a load curtailment estimation model to determine the expected potential load curtailments in the grid. The simulation results, tested on the standard IEEE 118-bus system and based on synthetic datasets, illustrate the high accuracy performance of the proposed method.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40565-019-0514-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1135860", 
            "issn": [
              "2196-5625", 
              "2196-5420"
            ], 
            "name": "Journal of Modern Power Systems and Clean Energy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "load curtailment", 
          "power grid", 
          "outage states", 
          "high accuracy performance", 
          "contingency scenarios", 
          "result of hurricanes", 
          "grid components", 
          "component outages", 
          "standard IEEE", 
          "simulation results", 
          "curtailment", 
          "grid", 
          "great significance", 
          "machine model", 
          "previous hurricanes", 
          "estimation model", 
          "accuracy performance", 
          "vector machine model", 
          "support vector machine model", 
          "second step", 
          "support vector machine", 
          "IEEE", 
          "emergency response", 
          "state assessment", 
          "sequential method", 
          "hurricanes", 
          "outages", 
          "deterministic results", 
          "vector machine", 
          "sigmoid model", 
          "model", 
          "intensity information", 
          "method", 
          "first step", 
          "posterior probability model", 
          "performance", 
          "results", 
          "machine", 
          "estimation", 
          "step", 
          "probability model", 
          "system", 
          "scenarios", 
          "components", 
          "recovery", 
          "formation", 
          "twin support vector machine", 
          "state", 
          "synthetic datasets", 
          "response", 
          "dataset", 
          "assessment", 
          "information", 
          "significance", 
          "imbalanced datasets", 
          "events", 
          "upcoming events", 
          "paper", 
          "potential load curtailments", 
          "three-step sequential method", 
          "such load curtailments", 
          "twin support vector machine (TWSVM) model", 
          "path/intensity information", 
          "deterministic outage state assessment", 
          "outage state assessment", 
          "TWSVM model", 
          "posterior probability sigmoid model", 
          "probability sigmoid model", 
          "probabilistic outage states", 
          "probability-weighted contingency scenarios", 
          "load curtailment estimation model", 
          "curtailment estimation model", 
          "Probabilistic load curtailment estimation", 
          "load curtailment estimation", 
          "curtailment estimation"
        ], 
        "name": "Probabilistic load curtailment estimation using posterior probability model and twin support vector machine", 
        "pagination": "665-675", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112900890"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40565-019-0514-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40565-019-0514-9", 
          "https://app.dimensions.ai/details/publication/pub.1112900890"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_816.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40565-019-0514-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40565-019-0514-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40565-019-0514-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40565-019-0514-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40565-019-0514-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      22 PREDICATES      105 URIs      92 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40565-019-0514-9 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author Nce84f575db034d72a4e1c76a365631aa
    4 schema:citation sg:pub.10.1007/11941439_30
    5 sg:pub.10.1007/3-540-44673-7_20
    6 sg:pub.10.1007/978-3-642-03348-3_54
    7 sg:pub.10.1007/s10462-012-9336-0
    8 sg:pub.10.1007/s11767-007-0211-0
    9 schema:datePublished 2019-03-21
    10 schema:datePublishedReg 2019-03-21
    11 schema:description Estimating the potential load curtailments as a result of hurricane is of great significance in improving the emergency response and recovery of power grid. This paper proposes a three-step sequential method in identifying such load curtailments prior to hurricane. In the first step, a twin support vector machine (TWSVM) model is trained on path/intensity information of previous hurricanes to enable a deterministic outage state assessment of the grid components in response to upcoming events. The TWSVM model is specifically used as it is suitable for handling imbalanced datasets. In the second step, a posterior probability sigmoid model is trained on the obtained results to convert the deterministic results into probabilistic outage states. These outage states enable the formation of probability-weighted contingency scenarios. Finally, the obtained component outages are integrated into a load curtailment estimation model to determine the expected potential load curtailments in the grid. The simulation results, tested on the standard IEEE 118-bus system and based on synthetic datasets, illustrate the high accuracy performance of the proposed method.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N110fc4db4d054fe1a50f761dc7f34502
    16 N231abb4a2a0f4b07bac4cf842e9a0610
    17 sg:journal.1135860
    18 schema:keywords IEEE
    19 Probabilistic load curtailment estimation
    20 TWSVM model
    21 accuracy performance
    22 assessment
    23 component outages
    24 components
    25 contingency scenarios
    26 curtailment
    27 curtailment estimation
    28 curtailment estimation model
    29 dataset
    30 deterministic outage state assessment
    31 deterministic results
    32 emergency response
    33 estimation
    34 estimation model
    35 events
    36 first step
    37 formation
    38 great significance
    39 grid
    40 grid components
    41 high accuracy performance
    42 hurricanes
    43 imbalanced datasets
    44 information
    45 intensity information
    46 load curtailment
    47 load curtailment estimation
    48 load curtailment estimation model
    49 machine
    50 machine model
    51 method
    52 model
    53 outage state assessment
    54 outage states
    55 outages
    56 paper
    57 path/intensity information
    58 performance
    59 posterior probability model
    60 posterior probability sigmoid model
    61 potential load curtailments
    62 power grid
    63 previous hurricanes
    64 probabilistic outage states
    65 probability model
    66 probability sigmoid model
    67 probability-weighted contingency scenarios
    68 recovery
    69 response
    70 result of hurricanes
    71 results
    72 scenarios
    73 second step
    74 sequential method
    75 sigmoid model
    76 significance
    77 simulation results
    78 standard IEEE
    79 state
    80 state assessment
    81 step
    82 such load curtailments
    83 support vector machine
    84 support vector machine model
    85 synthetic datasets
    86 system
    87 three-step sequential method
    88 twin support vector machine
    89 twin support vector machine (TWSVM) model
    90 upcoming events
    91 vector machine
    92 vector machine model
    93 schema:name Probabilistic load curtailment estimation using posterior probability model and twin support vector machine
    94 schema:pagination 665-675
    95 schema:productId N1c563339e719485ab503de92f113b3fe
    96 N693e09557f504ce2b15fe5d1c361a24c
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112900890
    98 https://doi.org/10.1007/s40565-019-0514-9
    99 schema:sdDatePublished 2021-12-01T19:46
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N05dca4f35ed646bba5d205d80eb07833
    102 schema:url https://doi.org/10.1007/s40565-019-0514-9
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N05dca4f35ed646bba5d205d80eb07833 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N110fc4db4d054fe1a50f761dc7f34502 schema:volumeNumber 7
    109 rdf:type schema:PublicationVolume
    110 N1c563339e719485ab503de92f113b3fe schema:name dimensions_id
    111 schema:value pub.1112900890
    112 rdf:type schema:PropertyValue
    113 N231abb4a2a0f4b07bac4cf842e9a0610 schema:issueNumber 4
    114 rdf:type schema:PublicationIssue
    115 N693e09557f504ce2b15fe5d1c361a24c schema:name doi
    116 schema:value 10.1007/s40565-019-0514-9
    117 rdf:type schema:PropertyValue
    118 Nb83159900d3f4b73a9b20d1f89bec718 rdf:first sg:person.011322471527.46
    119 rdf:rest rdf:nil
    120 Nce84f575db034d72a4e1c76a365631aa rdf:first sg:person.015454673157.21
    121 rdf:rest Nb83159900d3f4b73a9b20d1f89bec718
    122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Engineering
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Electrical and Electronic Engineering
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1135860 schema:issn 2196-5420
    129 2196-5625
    130 schema:name Journal of Modern Power Systems and Clean Energy
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.011322471527.46 schema:affiliation grid-institutes:grid.266239.a
    134 schema:familyName Khodaei
    135 schema:givenName Amin
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011322471527.46
    137 rdf:type schema:Person
    138 sg:person.015454673157.21 schema:affiliation grid-institutes:grid.266239.a
    139 schema:familyName Eskandarpour
    140 schema:givenName Rozhin
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015454673157.21
    142 rdf:type schema:Person
    143 sg:pub.10.1007/11941439_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033988291
    144 https://doi.org/10.1007/11941439_30
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/3-540-44673-7_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053016793
    147 https://doi.org/10.1007/3-540-44673-7_20
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-3-642-03348-3_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034432968
    150 https://doi.org/10.1007/978-3-642-03348-3_54
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10462-012-9336-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025664220
    153 https://doi.org/10.1007/s10462-012-9336-0
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11767-007-0211-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031787037
    156 https://doi.org/10.1007/s11767-007-0211-0
    157 rdf:type schema:CreativeWork
    158 grid-institutes:grid.266239.a schema:alternateName University of Denver,Department of Electrical and Computer Engineering,Denver,CO,USA,80208
    159 schema:name University of Denver,Department of Electrical and Computer Engineering,Denver,CO,USA,80208
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...