Hybrid interval AHP-entropy method for electricity user evaluation in smart electricity utilization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07

AUTHORS

Shouxiang WANG, Leijiao GE, Shengxia CAI, Lei WU

ABSTRACT

Smart electricity utilization (SEU) is one of the most important components in a smart grid. It is crucial to evaluate efficiency, safety, and demand response capability of electricity users to achieve the smart use of electricity. The analytic hierarchy process (AHP) uses subjective criteria to determine index weights in multi-criteria decision-making problems, while the entropy method provides objectivity in determining index weights. Taking into account the uncertainty of expert scoring and user data, a hybrid interval analytic hierarchy process (IAHP) and interval entropy (IE) method is proposed for electricity user evaluation (EUE). Specifically, in the proposed method, electricity users are evaluated in terms of energy efficiency, safety monitoring, and demand response. The weights of EUE indices are calculated under uncertainty. The proposed approach derives subjective weights of EUE indices by the IAHP with expert scoring as input data, and determines objective weights of EUE indices by the IE method with user data as inputs. In order to obtain the optimal combined index weights, the two weights are normalized by a selected weight factor. Numerical case studies illustrate the effectiveness and advantages of the proposed approach, which combines subjective and objective information to derive the optimal combined index weights. More... »

PAGES

701-711

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40565-017-0355-3

DOI

http://dx.doi.org/10.1007/s40565-017-0355-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100075323


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "WANG", 
        "givenName": "Shouxiang", 
        "id": "sg:person.010724447613.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724447613.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "GE", 
        "givenName": "Leijiao", 
        "id": "sg:person.012042557551.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012042557551.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nankai University", 
          "id": "https://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "Zhou Enlai School of Government, Nankai University, 300071, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "CAI", 
        "givenName": "Shengxia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Electrical and Computer Engineering Department, Clarkson University, 13699, Potsdam, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "WU", 
        "givenName": "Lei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymssp.2014.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000713538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2013.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001910632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dsp.2015.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005426717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008669523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40565-013-0032-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009198916", 
          "https://doi.org/10.1007/s40565-013-0032-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40565-013-0032-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009198916", 
          "https://doi.org/10.1007/s40565-013-0032-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.02.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012731247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/en8087752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014365056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2015.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014450316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2014.06.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015131502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40565-014-0094-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015624415", 
          "https://doi.org/10.1007/s40565-014-0094-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40565-014-0094-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015624415", 
          "https://doi.org/10.1007/s40565-014-0094-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2014.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016437262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2015.03.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017954220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40565-015-0103-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343009", 
          "https://doi.org/10.1007/s40565-015-0103-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40565-015-0103-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343009", 
          "https://doi.org/10.1007/s40565-015-0103-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025736643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15325008.2014.896433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026512013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/123675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031396318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40565-014-0059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031550721", 
          "https://doi.org/10.1007/s40565-014-0059-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40565-014-0059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031550721", 
          "https://doi.org/10.1007/s40565-014-0059-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2013.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034265488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2014.02.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034908400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2013.05.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040088207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molstruc.2013.12.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040454283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2014.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041306021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2013.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046933966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2014.05.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047824509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051012369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2006.874539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061777076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2013.2293626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061779333"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "Smart electricity utilization (SEU) is one of the most important components in a smart grid. It is crucial to evaluate efficiency, safety, and demand response capability of electricity users to achieve the smart use of electricity. The analytic hierarchy process (AHP) uses subjective criteria to determine index weights in multi-criteria decision-making problems, while the entropy method provides objectivity in determining index weights. Taking into account the uncertainty of expert scoring and user data, a hybrid interval analytic hierarchy process (IAHP) and interval entropy (IE) method is proposed for electricity user evaluation (EUE). Specifically, in the proposed method, electricity users are evaluated in terms of energy efficiency, safety monitoring, and demand response. The weights of EUE indices are calculated under uncertainty. The proposed approach derives subjective weights of EUE indices by the IAHP with expert scoring as input data, and determines objective weights of EUE indices by the IE method with user data as inputs. In order to obtain the optimal combined index weights, the two weights are normalized by a selected weight factor. Numerical case studies illustrate the effectiveness and advantages of the proposed approach, which combines subjective and objective information to derive the optimal combined index weights.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40565-017-0355-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135860", 
        "issn": [
          "2196-5625", 
          "2196-5420"
        ], 
        "name": "Journal of Modern Power Systems and Clean Energy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Hybrid interval AHP-entropy method for electricity user evaluation in smart electricity utilization", 
    "pagination": "701-711", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2287cdbaea2c16925fde1b2b9a72503674751f2e26e6676d44291e6192772b57"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40565-017-0355-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100075323"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40565-017-0355-3", 
      "https://app.dimensions.ai/details/publication/pub.1100075323"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40565-017-0355-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40565-017-0355-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40565-017-0355-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40565-017-0355-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40565-017-0355-3'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40565-017-0355-3 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N7b5cc85c2ec947dabd54988265d8f754
4 schema:citation sg:pub.10.1007/s40565-013-0032-0
5 sg:pub.10.1007/s40565-014-0059-x
6 sg:pub.10.1007/s40565-014-0094-7
7 sg:pub.10.1007/s40565-015-0103-5
8 https://doi.org/10.1016/j.apenergy.2014.04.010
9 https://doi.org/10.1016/j.apm.2013.05.035
10 https://doi.org/10.1016/j.cie.2013.03.002
11 https://doi.org/10.1016/j.compag.2014.01.007
12 https://doi.org/10.1016/j.dsp.2015.08.001
13 https://doi.org/10.1016/j.enbuild.2014.02.062
14 https://doi.org/10.1016/j.enconman.2013.12.034
15 https://doi.org/10.1016/j.energy.2014.06.104
16 https://doi.org/10.1016/j.energy.2015.03.054
17 https://doi.org/10.1016/j.eswa.2014.06.006
18 https://doi.org/10.1016/j.eswa.2015.07.030
19 https://doi.org/10.1016/j.fss.2013.07.010
20 https://doi.org/10.1016/j.fss.2015.03.001
21 https://doi.org/10.1016/j.ijepes.2014.05.073
22 https://doi.org/10.1016/j.ins.2014.02.077
23 https://doi.org/10.1016/j.molstruc.2013.12.079
24 https://doi.org/10.1016/j.omega.2014.05.007
25 https://doi.org/10.1016/j.ymssp.2014.05.036
26 https://doi.org/10.1080/15325008.2014.896433
27 https://doi.org/10.1109/tpwrs.2006.874539
28 https://doi.org/10.1109/tpwrs.2013.2293626
29 https://doi.org/10.1155/2014/123675
30 https://doi.org/10.3390/en8087752
31 schema:datePublished 2018-07
32 schema:datePublishedReg 2018-07-01
33 schema:description Smart electricity utilization (SEU) is one of the most important components in a smart grid. It is crucial to evaluate efficiency, safety, and demand response capability of electricity users to achieve the smart use of electricity. The analytic hierarchy process (AHP) uses subjective criteria to determine index weights in multi-criteria decision-making problems, while the entropy method provides objectivity in determining index weights. Taking into account the uncertainty of expert scoring and user data, a hybrid interval analytic hierarchy process (IAHP) and interval entropy (IE) method is proposed for electricity user evaluation (EUE). Specifically, in the proposed method, electricity users are evaluated in terms of energy efficiency, safety monitoring, and demand response. The weights of EUE indices are calculated under uncertainty. The proposed approach derives subjective weights of EUE indices by the IAHP with expert scoring as input data, and determines objective weights of EUE indices by the IE method with user data as inputs. In order to obtain the optimal combined index weights, the two weights are normalized by a selected weight factor. Numerical case studies illustrate the effectiveness and advantages of the proposed approach, which combines subjective and objective information to derive the optimal combined index weights.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N95e4dff28fe145e9abd9d82c77e7148e
38 Nbe24ab7890244e89b8e45b90d3d74777
39 sg:journal.1135860
40 schema:name Hybrid interval AHP-entropy method for electricity user evaluation in smart electricity utilization
41 schema:pagination 701-711
42 schema:productId N1d533d0a18244ef88a80128939c7d767
43 N425147056808474280fa8d7b29900485
44 Nb086d5049b4d4bafa578a71969e86597
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100075323
46 https://doi.org/10.1007/s40565-017-0355-3
47 schema:sdDatePublished 2019-04-11T02:30
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nfbeb7c9305454f2bbef314fe2a0566f1
50 schema:url http://link.springer.com/10.1007/s40565-017-0355-3
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N05f9329089424148a372db47fc246d25 schema:affiliation https://www.grid.ac/institutes/grid.216938.7
55 schema:familyName CAI
56 schema:givenName Shengxia
57 rdf:type schema:Person
58 N1d533d0a18244ef88a80128939c7d767 schema:name readcube_id
59 schema:value 2287cdbaea2c16925fde1b2b9a72503674751f2e26e6676d44291e6192772b57
60 rdf:type schema:PropertyValue
61 N28dcef3216cc4e89ad604a385d6fb589 rdf:first sg:person.012042557551.59
62 rdf:rest Nd92e8c27835441dcb4ebc0a8b90f47a2
63 N364f2eeff7bd4c188651d8379fe3dfab schema:affiliation https://www.grid.ac/institutes/grid.254280.9
64 schema:familyName WU
65 schema:givenName Lei
66 rdf:type schema:Person
67 N425147056808474280fa8d7b29900485 schema:name dimensions_id
68 schema:value pub.1100075323
69 rdf:type schema:PropertyValue
70 N7b5cc85c2ec947dabd54988265d8f754 rdf:first sg:person.010724447613.83
71 rdf:rest N28dcef3216cc4e89ad604a385d6fb589
72 N95e4dff28fe145e9abd9d82c77e7148e schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 Nb086d5049b4d4bafa578a71969e86597 schema:name doi
75 schema:value 10.1007/s40565-017-0355-3
76 rdf:type schema:PropertyValue
77 Nbe24ab7890244e89b8e45b90d3d74777 schema:volumeNumber 6
78 rdf:type schema:PublicationVolume
79 Nc723cbf754324c4fb5e62f18fe849999 rdf:first N364f2eeff7bd4c188651d8379fe3dfab
80 rdf:rest rdf:nil
81 Nd92e8c27835441dcb4ebc0a8b90f47a2 rdf:first N05f9329089424148a372db47fc246d25
82 rdf:rest Nc723cbf754324c4fb5e62f18fe849999
83 Nfbeb7c9305454f2bbef314fe2a0566f1 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
86 schema:name Economics
87 rdf:type schema:DefinedTerm
88 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
89 schema:name Applied Economics
90 rdf:type schema:DefinedTerm
91 sg:journal.1135860 schema:issn 2196-5420
92 2196-5625
93 schema:name Journal of Modern Power Systems and Clean Energy
94 rdf:type schema:Periodical
95 sg:person.010724447613.83 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
96 schema:familyName WANG
97 schema:givenName Shouxiang
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724447613.83
99 rdf:type schema:Person
100 sg:person.012042557551.59 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
101 schema:familyName GE
102 schema:givenName Leijiao
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012042557551.59
104 rdf:type schema:Person
105 sg:pub.10.1007/s40565-013-0032-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009198916
106 https://doi.org/10.1007/s40565-013-0032-0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s40565-014-0059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031550721
109 https://doi.org/10.1007/s40565-014-0059-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s40565-014-0094-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015624415
112 https://doi.org/10.1007/s40565-014-0094-7
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s40565-015-0103-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343009
115 https://doi.org/10.1007/s40565-015-0103-5
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.apenergy.2014.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025736643
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.apm.2013.05.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040088207
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.cie.2013.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034265488
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.compag.2014.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016437262
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.dsp.2015.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005426717
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.enbuild.2014.02.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034908400
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.enconman.2013.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001910632
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.energy.2014.06.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015131502
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.energy.2015.03.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017954220
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.eswa.2014.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051012369
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.eswa.2015.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008669523
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.fss.2013.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046933966
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.fss.2015.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014450316
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijepes.2014.05.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047824509
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ins.2014.02.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012731247
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.molstruc.2013.12.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040454283
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.omega.2014.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041306021
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ymssp.2014.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000713538
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/15325008.2014.896433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026512013
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tpwrs.2006.874539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061777076
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tpwrs.2013.2293626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061779333
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1155/2014/123675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031396318
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3390/en8087752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014365056
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.216938.7 schema:alternateName Nankai University
164 schema:name Zhou Enlai School of Government, Nankai University, 300071, Tianjin, China
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
167 schema:name Electrical and Computer Engineering Department, Clarkson University, 13699, Potsdam, NY, USA
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
170 schema:name Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, 300072, Tianjin, China
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...