Reduction of Hematite to Magnetite in CO/CO2 Gas Mixtures Under Carbon Looping Combustion Conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Tegan Simmonds, Peter C. Hayes

ABSTRACT

Iron oxides have been identified as promising materials for use as oxygen carriers in chemical looping combustion technologies as there are abundant resources available in the form of ore and in industrial wastes. The isothermal reduction of hematite (Fe2O3) in the fuel reactor and the subsequent oxidation of magnetite (Fe3O4) in air are the principal reactions of interest for these applications. Experimental investigations have been carried out to characterize the microstructural changes taking place as a result of the reduction reactions for a range of CO/CO2 gas compositions at temperatures between 1073 K and 1373 K (800 °C and 1100 °C). It has been shown that magnetite spinel is formed directly from hematite under these conditions and that porous magnetite or dense platelet or “lath” type morphologies can be formed depending on gas composition and reaction temperature. The conditions for the lath/pore transition are established. Dendritic gas pores are formed during the creation of the porous magnetite. This morphology allows continuous contact between the gas reactant and reaction interface and results in high reduction reaction rates. More... »

PAGES

101-113

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40553-017-0112-6

DOI

http://dx.doi.org/10.1007/s40553-017-0112-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091088317


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simmonds", 
        "givenName": "Tegan", 
        "id": "sg:person.015360741435.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360741435.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayes", 
        "givenName": "Peter C.", 
        "id": "sg:person.015631543347.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631543347.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.pecs.2011.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004445278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-009-9239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010251148", 
          "https://doi.org/10.1007/s11663-009-9239-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-009-9239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010251148", 
          "https://doi.org/10.1007/s11663-009-9239-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04122.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012402388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04122.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012402388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014578432", 
          "https://doi.org/10.1007/bf02653961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014578432", 
          "https://doi.org/10.1007/bf02653961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01913309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014584208", 
          "https://doi.org/10.1007/bf01913309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01913309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014584208", 
          "https://doi.org/10.1007/bf01913309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016327072", 
          "https://doi.org/10.1007/bf02654378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016327072", 
          "https://doi.org/10.1007/bf02654378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-2361(01)00051-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021342995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2013.07.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024139629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2012.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025249931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025433141", 
          "https://doi.org/10.1007/bf02654252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025433141", 
          "https://doi.org/10.1007/bf02654252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027056", 
          "https://doi.org/10.1007/bf02654330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027056", 
          "https://doi.org/10.1007/bf02654330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-938x(91)90073-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033659381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-938x(91)90073-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033659381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.05.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034363220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.05.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034363220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037233373", 
          "https://doi.org/10.1007/bf02654216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037233373", 
          "https://doi.org/10.1007/bf02654216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02696936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042001840", 
          "https://doi.org/10.1007/bf02696936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02696936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042001840", 
          "https://doi.org/10.1007/bf02696936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-7336(88)80082-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044576394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-938x(91)90103-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051930687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-938x(91)90103-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051930687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02664694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053691083", 
          "https://doi.org/10.1007/bf02664694"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Iron oxides have been identified as promising materials for use as oxygen carriers in chemical looping combustion technologies as there are abundant resources available in the form of ore and in industrial wastes. The isothermal reduction of hematite (Fe2O3) in the fuel reactor and the subsequent oxidation of magnetite (Fe3O4) in air are the principal reactions of interest for these applications. Experimental investigations have been carried out to characterize the microstructural changes taking place as a result of the reduction reactions for a range of CO/CO2 gas compositions at temperatures between 1073 K and 1373 K (800 \u00b0C and 1100 \u00b0C). It has been shown that magnetite spinel is formed directly from hematite under these conditions and that porous magnetite or dense platelet or \u201clath\u201d type morphologies can be formed depending on gas composition and reaction temperature. The conditions for the lath/pore transition are established. Dendritic gas pores are formed during the creation of the porous magnetite. This morphology allows continuous contact between the gas reactant and reaction interface and results in high reduction reaction rates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40553-017-0112-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136641", 
        "issn": [
          "2196-2936", 
          "2196-2944"
        ], 
        "name": "Metallurgical and Materials Transactions E", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Reduction of Hematite to Magnetite in CO/CO2 Gas Mixtures Under Carbon Looping Combustion Conditions", 
    "pagination": "101-113", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e4b63e10bfe64443864532bb09baa84c4717a3dcee82979521ec9fa896736d97"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40553-017-0112-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091088317"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40553-017-0112-6", 
      "https://app.dimensions.ai/details/publication/pub.1091088317"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54328_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40553-017-0112-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40553-017-0112-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40553-017-0112-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40553-017-0112-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40553-017-0112-6'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40553-017-0112-6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb912c49fefc14974bb873a226255e29c
4 schema:citation sg:pub.10.1007/bf01913309
5 sg:pub.10.1007/bf02653961
6 sg:pub.10.1007/bf02654216
7 sg:pub.10.1007/bf02654252
8 sg:pub.10.1007/bf02654330
9 sg:pub.10.1007/bf02654378
10 sg:pub.10.1007/bf02664694
11 sg:pub.10.1007/bf02696936
12 sg:pub.10.1007/s11663-009-9239-x
13 https://doi.org/10.1016/0010-938x(91)90073-x
14 https://doi.org/10.1016/0010-938x(91)90103-v
15 https://doi.org/10.1016/0168-7336(88)80082-2
16 https://doi.org/10.1016/j.apenergy.2013.05.043
17 https://doi.org/10.1016/j.cej.2013.07.091
18 https://doi.org/10.1016/j.ijhydene.2012.08.020
19 https://doi.org/10.1016/j.pecs.2011.09.001
20 https://doi.org/10.1016/s0016-2361(01)00051-5
21 https://doi.org/10.1111/j.1365-246x.2009.04122.x
22 schema:datePublished 2017-12
23 schema:datePublishedReg 2017-12-01
24 schema:description Iron oxides have been identified as promising materials for use as oxygen carriers in chemical looping combustion technologies as there are abundant resources available in the form of ore and in industrial wastes. The isothermal reduction of hematite (Fe2O3) in the fuel reactor and the subsequent oxidation of magnetite (Fe3O4) in air are the principal reactions of interest for these applications. Experimental investigations have been carried out to characterize the microstructural changes taking place as a result of the reduction reactions for a range of CO/CO2 gas compositions at temperatures between 1073 K and 1373 K (800 °C and 1100 °C). It has been shown that magnetite spinel is formed directly from hematite under these conditions and that porous magnetite or dense platelet or “lath” type morphologies can be formed depending on gas composition and reaction temperature. The conditions for the lath/pore transition are established. Dendritic gas pores are formed during the creation of the porous magnetite. This morphology allows continuous contact between the gas reactant and reaction interface and results in high reduction reaction rates.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N73f7846402b241469d62356856f63dcc
29 Nf98003c07cbc4d219d62048fc4204d27
30 sg:journal.1136641
31 schema:name Reduction of Hematite to Magnetite in CO/CO2 Gas Mixtures Under Carbon Looping Combustion Conditions
32 schema:pagination 101-113
33 schema:productId N73e968401dbd4fd4a8898f8223af9bc2
34 Naa246ad49e58467c864fcee84cbdb6c5
35 Ne08b8c4052b044b898b03bfd78617321
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091088317
37 https://doi.org/10.1007/s40553-017-0112-6
38 schema:sdDatePublished 2019-04-11T10:20
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N88f63010c3094368964b7cc91860eaa2
41 schema:url https://link.springer.com/10.1007%2Fs40553-017-0112-6
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N34ed53c8668c4885ad88470d343d2138 rdf:first sg:person.015631543347.08
46 rdf:rest rdf:nil
47 N73e968401dbd4fd4a8898f8223af9bc2 schema:name readcube_id
48 schema:value e4b63e10bfe64443864532bb09baa84c4717a3dcee82979521ec9fa896736d97
49 rdf:type schema:PropertyValue
50 N73f7846402b241469d62356856f63dcc schema:issueNumber 2-4
51 rdf:type schema:PublicationIssue
52 N88f63010c3094368964b7cc91860eaa2 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Naa246ad49e58467c864fcee84cbdb6c5 schema:name doi
55 schema:value 10.1007/s40553-017-0112-6
56 rdf:type schema:PropertyValue
57 Nb912c49fefc14974bb873a226255e29c rdf:first sg:person.015360741435.29
58 rdf:rest N34ed53c8668c4885ad88470d343d2138
59 Ne08b8c4052b044b898b03bfd78617321 schema:name dimensions_id
60 schema:value pub.1091088317
61 rdf:type schema:PropertyValue
62 Nf98003c07cbc4d219d62048fc4204d27 schema:volumeNumber 4
63 rdf:type schema:PublicationVolume
64 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
65 schema:name Chemical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
68 schema:name Physical Chemistry (incl. Structural)
69 rdf:type schema:DefinedTerm
70 sg:journal.1136641 schema:issn 2196-2936
71 2196-2944
72 schema:name Metallurgical and Materials Transactions E
73 rdf:type schema:Periodical
74 sg:person.015360741435.29 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
75 schema:familyName Simmonds
76 schema:givenName Tegan
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360741435.29
78 rdf:type schema:Person
79 sg:person.015631543347.08 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
80 schema:familyName Hayes
81 schema:givenName Peter C.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631543347.08
83 rdf:type schema:Person
84 sg:pub.10.1007/bf01913309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014584208
85 https://doi.org/10.1007/bf01913309
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf02653961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014578432
88 https://doi.org/10.1007/bf02653961
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02654216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037233373
91 https://doi.org/10.1007/bf02654216
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02654252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025433141
94 https://doi.org/10.1007/bf02654252
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02654330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033027056
97 https://doi.org/10.1007/bf02654330
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf02654378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016327072
100 https://doi.org/10.1007/bf02654378
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02664694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053691083
103 https://doi.org/10.1007/bf02664694
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02696936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042001840
106 https://doi.org/10.1007/bf02696936
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11663-009-9239-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010251148
109 https://doi.org/10.1007/s11663-009-9239-x
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0010-938x(91)90073-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033659381
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0010-938x(91)90103-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1051930687
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0168-7336(88)80082-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044576394
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.apenergy.2013.05.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034363220
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.cej.2013.07.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024139629
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijhydene.2012.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025249931
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.pecs.2011.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004445278
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0016-2361(01)00051-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021342995
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1365-246x.2009.04122.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012402388
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
130 schema:name Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...