Isothermal Oxidation of Magnetite to Hematite in Air and Cyclic Reduction/Oxidation Under Carbon Looping Combustion Conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Tegan Simmonds, Peter C. Hayes

ABSTRACT

In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place. More... »

PAGES

114-122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40553-017-0111-7

DOI

http://dx.doi.org/10.1007/s40553-017-0111-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091087774


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simmonds", 
        "givenName": "Tegan", 
        "id": "sg:person.015360741435.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360741435.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayes", 
        "givenName": "Peter C.", 
        "id": "sg:person.015631543347.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631543347.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0009-2509(01)00007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007794743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-009-9239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010251148", 
          "https://doi.org/10.1007/s11663-009-9239-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-009-9239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010251148", 
          "https://doi.org/10.1007/s11663-009-9239-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025433141", 
          "https://doi.org/10.1007/bf02654252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025433141", 
          "https://doi.org/10.1007/bf02654252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028459331", 
          "https://doi.org/10.1007/bf02667322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028459331", 
          "https://doi.org/10.1007/bf02667322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027056", 
          "https://doi.org/10.1007/bf02654330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027056", 
          "https://doi.org/10.1007/bf02654330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.07.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039588064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02696936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042001840", 
          "https://doi.org/10.1007/bf02696936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02696936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042001840", 
          "https://doi.org/10.1007/bf02696936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889881009345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046497575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2008.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050019214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie501536s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055616265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40553-017-0112-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091088317", 
          "https://doi.org/10.1007/s40553-017-0112-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40553-017-0112-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091088317", 
          "https://doi.org/10.1007/s40553-017-0112-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 \u00b0C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40553-017-0111-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136641", 
        "issn": [
          "2196-2936", 
          "2196-2944"
        ], 
        "name": "Metallurgical and Materials Transactions E", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Isothermal Oxidation of Magnetite to Hematite in Air and Cyclic Reduction/Oxidation Under Carbon Looping Combustion Conditions", 
    "pagination": "114-122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c99d0bb4fbb935ed06082d1fd697d5dd81a1be4afcc95a0d723e923f3bf1e7e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40553-017-0111-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091087774"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40553-017-0111-7", 
      "https://app.dimensions.ai/details/publication/pub.1091087774"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113644_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40553-017-0111-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40553-017-0111-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40553-017-0111-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40553-017-0111-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40553-017-0111-7'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40553-017-0111-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N4162cec417394a2b93b37019a11e337d
4 schema:citation sg:pub.10.1007/bf02654252
5 sg:pub.10.1007/bf02654330
6 sg:pub.10.1007/bf02667322
7 sg:pub.10.1007/bf02696936
8 sg:pub.10.1007/s11663-009-9239-x
9 sg:pub.10.1007/s40553-017-0112-6
10 https://doi.org/10.1016/j.ces.2008.05.028
11 https://doi.org/10.1016/j.powtec.2007.07.032
12 https://doi.org/10.1016/s0009-2509(01)00007-0
13 https://doi.org/10.1021/ie501536s
14 https://doi.org/10.1107/s0021889881009345
15 schema:datePublished 2017-12
16 schema:datePublishedReg 2017-12-01
17 schema:description In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nabcd94e7f73349e6886af27885d42491
22 Nb0ce27f8a47848cf98d2f6d643bf838d
23 sg:journal.1136641
24 schema:name Isothermal Oxidation of Magnetite to Hematite in Air and Cyclic Reduction/Oxidation Under Carbon Looping Combustion Conditions
25 schema:pagination 114-122
26 schema:productId N0d3b65c928bc4fbfa4e5f9832547a795
27 N706bd7f44c4b43d0b5190ec87dd61856
28 Nd248b20d298341aab977fa5309fda74c
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091087774
30 https://doi.org/10.1007/s40553-017-0111-7
31 schema:sdDatePublished 2019-04-11T10:30
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N057b5103ec4f48a9a0e9ee603bb1a91e
34 schema:url https://link.springer.com/10.1007%2Fs40553-017-0111-7
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N057b5103ec4f48a9a0e9ee603bb1a91e schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N0d3b65c928bc4fbfa4e5f9832547a795 schema:name dimensions_id
41 schema:value pub.1091087774
42 rdf:type schema:PropertyValue
43 N4162cec417394a2b93b37019a11e337d rdf:first sg:person.015360741435.29
44 rdf:rest Nf1f7c2aa9f5942608d001d3409d4f453
45 N706bd7f44c4b43d0b5190ec87dd61856 schema:name doi
46 schema:value 10.1007/s40553-017-0111-7
47 rdf:type schema:PropertyValue
48 Nabcd94e7f73349e6886af27885d42491 schema:issueNumber 2-4
49 rdf:type schema:PublicationIssue
50 Nb0ce27f8a47848cf98d2f6d643bf838d schema:volumeNumber 4
51 rdf:type schema:PublicationVolume
52 Nd248b20d298341aab977fa5309fda74c schema:name readcube_id
53 schema:value c99d0bb4fbb935ed06082d1fd697d5dd81a1be4afcc95a0d723e923f3bf1e7e7
54 rdf:type schema:PropertyValue
55 Nf1f7c2aa9f5942608d001d3409d4f453 rdf:first sg:person.015631543347.08
56 rdf:rest rdf:nil
57 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
58 schema:name Chemical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Chemistry (incl. Structural)
62 rdf:type schema:DefinedTerm
63 sg:journal.1136641 schema:issn 2196-2936
64 2196-2944
65 schema:name Metallurgical and Materials Transactions E
66 rdf:type schema:Periodical
67 sg:person.015360741435.29 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
68 schema:familyName Simmonds
69 schema:givenName Tegan
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360741435.29
71 rdf:type schema:Person
72 sg:person.015631543347.08 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
73 schema:familyName Hayes
74 schema:givenName Peter C.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631543347.08
76 rdf:type schema:Person
77 sg:pub.10.1007/bf02654252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025433141
78 https://doi.org/10.1007/bf02654252
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02654330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033027056
81 https://doi.org/10.1007/bf02654330
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02667322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028459331
84 https://doi.org/10.1007/bf02667322
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02696936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042001840
87 https://doi.org/10.1007/bf02696936
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s11663-009-9239-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010251148
90 https://doi.org/10.1007/s11663-009-9239-x
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s40553-017-0112-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091088317
93 https://doi.org/10.1007/s40553-017-0112-6
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.ces.2008.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050019214
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.powtec.2007.07.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039588064
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0009-2509(01)00007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007794743
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1021/ie501536s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055616265
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1107/s0021889881009345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046497575
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
106 schema:name Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...