Research on the microstructure evolution of Ni-based superalloy cylindrical parts during hot power spinning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Qin-Xiang Xia, Jin-Chuan Long, Ning-Yuan Zhu, Gang-Feng Xiao

ABSTRACT

To predict the microstructure evolution and reveal the forming mechanism of Ni-based superalloy cylindrical parts during hot power spinning, a finite element method (FEM) model of deformation-heat transfer-microstructure evolution was established using MSC.Marc software. A numerical simulation was then conducted based on the secondary development of user subroutines, to investigate evolution of the microstructure of a Haynes 230 alloy cylindrical part during hot power spinning. The volume fraction of dynamic recrystallization (DRX) and the grain size of Haynes 230 alloy cylindrical parts during hot power spinning were analyzed. The results showed that the DRX of the spun workpiece was more obvious with an increase in the forming temperature, T, and the total thinning ratio of wall thickness, Ψt. Furthermore, the complete DRX microstructure with fine and uniform grains was obtained when T⩾ 1 100 °C and Ψt⩾ 56%, but the grain size of the spun workpiece decreased slightly with an increase in the roller feed rate, f. The experimental results conformed well with simulation results. More... »

PAGES

52-63

References to SciGraph publications

  • 2017-01. Uneven plastic deformation behavior of high-strength cast aluminum alloy tube in multi-pass hot power backward spinning in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-04. Numerical Simulation Research on a New Spinning Process: Double-Roller Clamping Spinning Process in INTERNATIONAL JOURNAL OF MATERIAL FORMING
  • 2017-08. Numerical modelling, validation and analysis of multi-pass sheet metal spinning processes in INTERNATIONAL JOURNAL OF MATERIAL FORMING
  • 2017-01. Deformation behavior of haynes230 superalloy during backward flow forming in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2017-12. A study on non-uniform deformation of backward flow forming and its influencing factors in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2014-08. Flow Stress Evaluation in Hot Rolling of Steel in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2015-05. Research on the grain refinement method of cylindrical parts by power spinning in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2009-12. Investigation of effective parameters on surface roughness in thermomechanical tube spinning process in INTERNATIONAL JOURNAL OF MATERIAL FORMING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40436-018-0242-9

    DOI

    http://dx.doi.org/10.1007/s40436-018-0242-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111497774


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "South China University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.79703.3a", 
              "name": [
                "Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automobile Engineering, South China University of Technology, 510640, Guangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xia", 
            "givenName": "Qin-Xiang", 
            "id": "sg:person.01344507005.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344507005.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "South China University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.79703.3a", 
              "name": [
                "Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automobile Engineering, South China University of Technology, 510640, Guangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Long", 
            "givenName": "Jin-Chuan", 
            "id": "sg:person.014404514336.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014404514336.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jiangxi University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.440790.e", 
              "name": [
                "Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automobile Engineering, South China University of Technology, 510640, Guangzhou, People\u2019s Republic of China", 
                "School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, 341000, Ganzhou, Jiangxi, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Ning-Yuan", 
            "id": "sg:person.013305426477.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013305426477.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "South China University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.79703.3a", 
              "name": [
                "Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automobile Engineering, South China University of Technology, 510640, Guangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Gang-Feng", 
            "id": "sg:person.010653601321.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010653601321.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12289-016-1308-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000379769", 
              "https://doi.org/10.1007/s12289-016-1308-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12289-016-1308-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000379769", 
              "https://doi.org/10.1007/s12289-016-1308-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2014.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001597831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2014.12.092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003626726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12289-010-0722-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004314769", 
              "https://doi.org/10.1007/s12289-010-0722-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12289-010-0722-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004314769", 
              "https://doi.org/10.1007/s12289-010-0722-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(15)63778-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005584799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(11)61599-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018829968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2014.02.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022832923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2009.08.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025860680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2010.11.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027704529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2009.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027868826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-017-0009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029158869", 
              "https://doi.org/10.1007/s12541-017-0009-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-017-0009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029158869", 
              "https://doi.org/10.1007/s12541-017-0009-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-014-6686-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030146022", 
              "https://doi.org/10.1007/s00170-014-6686-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-8800-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030554075", 
              "https://doi.org/10.1007/s00170-016-8800-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmecsci.2016.01.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030651443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-014-1049-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039698639", 
              "https://doi.org/10.1007/s11665-014-1049-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2008.10.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047282853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2014.03.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048584014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12289-009-0420-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049719208", 
              "https://doi.org/10.1007/s12289-009-0420-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12289-009-0420-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049719208", 
              "https://doi.org/10.1007/s12289-009-0420-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijmpt.2017.080586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067478669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0727-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090951879", 
              "https://doi.org/10.1007/s00170-017-0727-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0727-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090951879", 
              "https://doi.org/10.1007/s00170-017-0727-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmapro.2018.05.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104410533"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "To predict the microstructure evolution and reveal the forming mechanism of Ni-based superalloy cylindrical parts during hot power spinning, a finite element method (FEM) model of deformation-heat transfer-microstructure evolution was established using MSC.Marc software. A numerical simulation was then conducted based on the secondary development of user subroutines, to investigate evolution of the microstructure of a Haynes 230 alloy cylindrical part during hot power spinning. The volume fraction of dynamic recrystallization (DRX) and the grain size of Haynes 230 alloy cylindrical parts during hot power spinning were analyzed. The results showed that the DRX of the spun workpiece was more obvious with an increase in the forming temperature, T, and the total thinning ratio of wall thickness, \u03a8t. Furthermore, the complete DRX microstructure with fine and uniform grains was obtained when T\u2a7e 1 100 \u00b0C and \u03a8t\u2a7e 56%, but the grain size of the spun workpiece decreased slightly with an increase in the roller feed rate, f. The experimental results conformed well with simulation results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40436-018-0242-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3795850", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136662", 
            "issn": [
              "2095-3127", 
              "2195-3597"
            ], 
            "name": "Advances in Manufacturing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Research on the microstructure evolution of Ni-based superalloy cylindrical parts during hot power spinning", 
        "pagination": "52-63", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7fb33ef9e9de2d16300afed72f5aebf580c6a457cbd6a4a6a71bcd33f4e21b0f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40436-018-0242-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111497774"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40436-018-0242-9", 
          "https://app.dimensions.ai/details/publication/pub.1111497774"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72839_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40436-018-0242-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0242-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0242-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0242-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0242-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    159 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40436-018-0242-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nb2c579aa7a8a42358fb23a3f58c85ee3
    4 schema:citation sg:pub.10.1007/s00170-014-6686-6
    5 sg:pub.10.1007/s00170-016-8800-4
    6 sg:pub.10.1007/s00170-017-0727-x
    7 sg:pub.10.1007/s11665-014-1049-x
    8 sg:pub.10.1007/s12289-009-0420-1
    9 sg:pub.10.1007/s12289-010-0722-3
    10 sg:pub.10.1007/s12289-016-1308-5
    11 sg:pub.10.1007/s12541-017-0009-4
    12 https://doi.org/10.1016/j.actamat.2008.10.021
    13 https://doi.org/10.1016/j.ijmachtools.2014.05.005
    14 https://doi.org/10.1016/j.ijmecsci.2016.01.024
    15 https://doi.org/10.1016/j.jmapro.2018.05.034
    16 https://doi.org/10.1016/j.jmatprotec.2009.08.021
    17 https://doi.org/10.1016/j.matdes.2009.05.029
    18 https://doi.org/10.1016/j.matdes.2010.11.048
    19 https://doi.org/10.1016/j.matdes.2014.02.041
    20 https://doi.org/10.1016/j.msea.2014.03.112
    21 https://doi.org/10.1016/j.msea.2014.12.092
    22 https://doi.org/10.1016/s1003-6326(11)61599-9
    23 https://doi.org/10.1016/s1003-6326(15)63778-5
    24 https://doi.org/10.1504/ijmpt.2017.080586
    25 schema:datePublished 2019-03
    26 schema:datePublishedReg 2019-03-01
    27 schema:description To predict the microstructure evolution and reveal the forming mechanism of Ni-based superalloy cylindrical parts during hot power spinning, a finite element method (FEM) model of deformation-heat transfer-microstructure evolution was established using MSC.Marc software. A numerical simulation was then conducted based on the secondary development of user subroutines, to investigate evolution of the microstructure of a Haynes 230 alloy cylindrical part during hot power spinning. The volume fraction of dynamic recrystallization (DRX) and the grain size of Haynes 230 alloy cylindrical parts during hot power spinning were analyzed. The results showed that the DRX of the spun workpiece was more obvious with an increase in the forming temperature, T, and the total thinning ratio of wall thickness, Ψt. Furthermore, the complete DRX microstructure with fine and uniform grains was obtained when T⩾ 1 100 °C and Ψt⩾ 56%, but the grain size of the spun workpiece decreased slightly with an increase in the roller feed rate, f. The experimental results conformed well with simulation results.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf Ndc309d04cbdb4db3b21e8e6e6ff12a22
    32 Ndfa8c5f6e1d44cf28206da61dd640299
    33 sg:journal.1136662
    34 schema:name Research on the microstructure evolution of Ni-based superalloy cylindrical parts during hot power spinning
    35 schema:pagination 52-63
    36 schema:productId N15e7bdb7c7544d3a99dbb100612ed191
    37 N1c652714f45e4515b6652ebec065db28
    38 Nf8070c025d1f46679682f5a700541b90
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111497774
    40 https://doi.org/10.1007/s40436-018-0242-9
    41 schema:sdDatePublished 2019-04-11T12:53
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher Nef555381ab22486a8635ccd2c5fd969b
    44 schema:url https://link.springer.com/10.1007%2Fs40436-018-0242-9
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N15e7bdb7c7544d3a99dbb100612ed191 schema:name doi
    49 schema:value 10.1007/s40436-018-0242-9
    50 rdf:type schema:PropertyValue
    51 N1c652714f45e4515b6652ebec065db28 schema:name readcube_id
    52 schema:value 7fb33ef9e9de2d16300afed72f5aebf580c6a457cbd6a4a6a71bcd33f4e21b0f
    53 rdf:type schema:PropertyValue
    54 N727a0718323549f1b88e9b07a6511c41 rdf:first sg:person.013305426477.16
    55 rdf:rest Na07b9211942d4ca28f69c1c6526e156e
    56 N8e9b36ed31264becb02cf31a702a58f0 rdf:first sg:person.014404514336.23
    57 rdf:rest N727a0718323549f1b88e9b07a6511c41
    58 Na07b9211942d4ca28f69c1c6526e156e rdf:first sg:person.010653601321.26
    59 rdf:rest rdf:nil
    60 Nb2c579aa7a8a42358fb23a3f58c85ee3 rdf:first sg:person.01344507005.61
    61 rdf:rest N8e9b36ed31264becb02cf31a702a58f0
    62 Ndc309d04cbdb4db3b21e8e6e6ff12a22 schema:issueNumber 1
    63 rdf:type schema:PublicationIssue
    64 Ndfa8c5f6e1d44cf28206da61dd640299 schema:volumeNumber 7
    65 rdf:type schema:PublicationVolume
    66 Nef555381ab22486a8635ccd2c5fd969b schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Nf8070c025d1f46679682f5a700541b90 schema:name dimensions_id
    69 schema:value pub.1111497774
    70 rdf:type schema:PropertyValue
    71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Engineering
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Materials Engineering
    76 rdf:type schema:DefinedTerm
    77 sg:grant.3795850 http://pending.schema.org/fundedItem sg:pub.10.1007/s40436-018-0242-9
    78 rdf:type schema:MonetaryGrant
    79 sg:journal.1136662 schema:issn 2095-3127
    80 2195-3597
    81 schema:name Advances in Manufacturing
    82 rdf:type schema:Periodical
    83 sg:person.010653601321.26 schema:affiliation https://www.grid.ac/institutes/grid.79703.3a
    84 schema:familyName Xiao
    85 schema:givenName Gang-Feng
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010653601321.26
    87 rdf:type schema:Person
    88 sg:person.013305426477.16 schema:affiliation https://www.grid.ac/institutes/grid.440790.e
    89 schema:familyName Zhu
    90 schema:givenName Ning-Yuan
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013305426477.16
    92 rdf:type schema:Person
    93 sg:person.01344507005.61 schema:affiliation https://www.grid.ac/institutes/grid.79703.3a
    94 schema:familyName Xia
    95 schema:givenName Qin-Xiang
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344507005.61
    97 rdf:type schema:Person
    98 sg:person.014404514336.23 schema:affiliation https://www.grid.ac/institutes/grid.79703.3a
    99 schema:familyName Long
    100 schema:givenName Jin-Chuan
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014404514336.23
    102 rdf:type schema:Person
    103 sg:pub.10.1007/s00170-014-6686-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030146022
    104 https://doi.org/10.1007/s00170-014-6686-6
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s00170-016-8800-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030554075
    107 https://doi.org/10.1007/s00170-016-8800-4
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00170-017-0727-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1090951879
    110 https://doi.org/10.1007/s00170-017-0727-x
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s11665-014-1049-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039698639
    113 https://doi.org/10.1007/s11665-014-1049-x
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s12289-009-0420-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049719208
    116 https://doi.org/10.1007/s12289-009-0420-1
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s12289-010-0722-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004314769
    119 https://doi.org/10.1007/s12289-010-0722-3
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s12289-016-1308-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000379769
    122 https://doi.org/10.1007/s12289-016-1308-5
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s12541-017-0009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029158869
    125 https://doi.org/10.1007/s12541-017-0009-4
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.actamat.2008.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047282853
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.ijmachtools.2014.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001597831
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.ijmecsci.2016.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030651443
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.jmapro.2018.05.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104410533
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.jmatprotec.2009.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025860680
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.matdes.2009.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027868826
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.matdes.2010.11.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027704529
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.matdes.2014.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022832923
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.msea.2014.03.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048584014
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.msea.2014.12.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003626726
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/s1003-6326(11)61599-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018829968
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/s1003-6326(15)63778-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005584799
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1504/ijmpt.2017.080586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067478669
    152 rdf:type schema:CreativeWork
    153 https://www.grid.ac/institutes/grid.440790.e schema:alternateName Jiangxi University of Science and Technology
    154 schema:name Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automobile Engineering, South China University of Technology, 510640, Guangzhou, People’s Republic of China
    155 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, 341000, Ganzhou, Jiangxi, People’s Republic of China
    156 rdf:type schema:Organization
    157 https://www.grid.ac/institutes/grid.79703.3a schema:alternateName South China University of Technology
    158 schema:name Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automobile Engineering, South China University of Technology, 510640, Guangzhou, People’s Republic of China
    159 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...