Dynamic interplay between dislocations and precipitates in creep aging of an Al-Zn-Mg-Cu alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Heng Li, Tian-Jun Bian, Chao Lei, Gao-Wei Zheng, Yu-Fei Wang

ABSTRACT

Creep age forming (CAF) is an advanced forming technology used for manufacturing large complex integrated panel components. However, in creep aging (CA), unlike in sole creep or aging procedure, the dislocation movement and the precipitation process occur simultaneously, leading to difficulty in understanding of the dynamic interplay between these two phenomena. In this work, taking 7050 Al alloy, a typical Al-Zn-Mg-Cu alloy, as the test material, an experimental scheme combining pre-deformation, artificial aging (AA), and tensile/compressive CA is designed to decouple and reveal the dynamic interaction mechanism of both phenomena. From AA experiments, the static interaction between dislocations and precipitates is studied, and then their dynamic interactions in CA and each evolution are comparatively investigated. The research shows that both total strain and strain rate increase with the increase in pre-deformation in tensile and compressive CA. However, the total creep strain in compressive CA is larger than that in tensile CA. In additional, the more the dislocations are induced, the sparser and more heterogeneous the overall distribution of precipitates becomes. For dynamic interplay, in the first stage of CA (I), under thermal-mechanical loading, the GP zones and η′ phases gradually nucleate and grow, while the effect of dislocation multiplication is dominant compared with dislocation annihilation, leading to an increase in total dislocation density. Soon, the dislocation movement is gradually hindered by tangling, pile-up, and the precipitates that have grown on the dislocation lines, this decreases the mobile dislocation density and results in a significant decrease in creep rate. In the second stage (II), the precipitates grow further, especially those lying on the dislocation lines; the effects of pinning and hindrance are enhanced until the dislocation multiplication and annihilation reach a dynamic equilibrium, and the total and mobile dislocation densities tend to be roughly unchanged, thus, the creep rate remains relatively constant in this stage. More... »

PAGES

15-29

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40436-018-0240-y

DOI

http://dx.doi.org/10.1007/s40436-018-0240-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110753315


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Heng", 
        "id": "sg:person.01244210015.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244210015.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bian", 
        "givenName": "Tian-Jun", 
        "id": "sg:person.016107527360.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107527360.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Chao", 
        "id": "sg:person.011226541457.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011226541457.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Gao-Wei", 
        "id": "sg:person.013707427555.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707427555.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yu-Fei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0001-6160(53)90006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001878254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(53)90006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001878254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(83)90221-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004737454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(83)90221-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004737454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2010.09.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006533243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2013.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010844319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(98)00293-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012087177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013485064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.12.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013757402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2005.08.099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015133500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2008.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016721093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016850170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micron.2016.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017063899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijplas.2016.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017595107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2016.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018381031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(01)00251-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019017243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.04.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019726757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2010.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020368454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2013.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020762340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.08.291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021160050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-6419(03)00078-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-6419(03)00078-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2015.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029449303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02652248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033642946", 
          "https://doi.org/10.1007/bf02652248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02652248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033642946", 
          "https://doi.org/10.1007/bf02652248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(93)90653-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036334218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(93)90653-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036334218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2016.01.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041105693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.10.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042581433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00324-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044386958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00324-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044386958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2004.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046532824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049651879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050559996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2004.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052308230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2017.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084094799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.07.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090858842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.10.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092128359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2017.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099929875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2018.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105969262"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Creep age forming (CAF) is an advanced forming technology used for manufacturing large complex integrated panel components. However, in creep aging (CA), unlike in sole creep or aging procedure, the dislocation movement and the precipitation process occur simultaneously, leading to difficulty in understanding of the dynamic interplay between these two phenomena. In this work, taking 7050 Al alloy, a typical Al-Zn-Mg-Cu alloy, as the test material, an experimental scheme combining pre-deformation, artificial aging (AA), and tensile/compressive CA is designed to decouple and reveal the dynamic interaction mechanism of both phenomena. From AA experiments, the static interaction between dislocations and precipitates is studied, and then their dynamic interactions in CA and each evolution are comparatively investigated. The research shows that both total strain and strain rate increase with the increase in pre-deformation in tensile and compressive CA. However, the total creep strain in compressive CA is larger than that in tensile CA. In additional, the more the dislocations are induced, the sparser and more heterogeneous the overall distribution of precipitates becomes. For dynamic interplay, in the first stage of CA (I), under thermal-mechanical loading, the GP zones and \u03b7\u2032 phases gradually nucleate and grow, while the effect of dislocation multiplication is dominant compared with dislocation annihilation, leading to an increase in total dislocation density. Soon, the dislocation movement is gradually hindered by tangling, pile-up, and the precipitates that have grown on the dislocation lines, this decreases the mobile dislocation density and results in a significant decrease in creep rate. In the second stage (II), the precipitates grow further, especially those lying on the dislocation lines; the effects of pinning and hindrance are enhanced until the dislocation multiplication and annihilation reach a dynamic equilibrium, and the total and mobile dislocation densities tend to be roughly unchanged, thus, the creep rate remains relatively constant in this stage.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40436-018-0240-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3795850", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136662", 
        "issn": [
          "2095-3127", 
          "2195-3597"
        ], 
        "name": "Advances in Manufacturing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Dynamic interplay between dislocations and precipitates in creep aging of an Al-Zn-Mg-Cu alloy", 
    "pagination": "15-29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "88ea4ba6cf013a8867b8715628f6050ef9fa03ef85a6a57328934c76b1687f30"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40436-018-0240-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110753315"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40436-018-0240-y", 
      "https://app.dimensions.ai/details/publication/pub.1110753315"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72835_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40436-018-0240-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0240-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0240-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0240-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0240-y'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40436-018-0240-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf32e0f35e03d4ee395d90d4dd07b3efd
4 schema:citation sg:pub.10.1007/bf02652248
5 https://doi.org/10.1016/0001-6160(53)90006-6
6 https://doi.org/10.1016/0001-6160(83)90221-3
7 https://doi.org/10.1016/0921-5093(93)90653-v
8 https://doi.org/10.1016/j.actamat.2004.06.025
9 https://doi.org/10.1016/j.actamat.2010.12.041
10 https://doi.org/10.1016/j.actamat.2016.02.017
11 https://doi.org/10.1016/j.ijmachtools.2006.01.026
12 https://doi.org/10.1016/j.ijmachtools.2010.08.007
13 https://doi.org/10.1016/j.ijplas.2016.11.007
14 https://doi.org/10.1016/j.jallcom.2016.08.291
15 https://doi.org/10.1016/j.jallcom.2017.10.035
16 https://doi.org/10.1016/j.jmatprotec.2013.08.017
17 https://doi.org/10.1016/j.jmatprotec.2016.07.004
18 https://doi.org/10.1016/j.jmatprotec.2017.12.028
19 https://doi.org/10.1016/j.matchar.2018.08.005
20 https://doi.org/10.1016/j.matdes.2013.11.011
21 https://doi.org/10.1016/j.matdes.2014.04.054
22 https://doi.org/10.1016/j.matdes.2015.06.029
23 https://doi.org/10.1016/j.matdes.2017.03.023
24 https://doi.org/10.1016/j.micron.2016.07.010
25 https://doi.org/10.1016/j.msea.2005.08.099
26 https://doi.org/10.1016/j.msea.2008.04.023
27 https://doi.org/10.1016/j.msea.2010.09.069
28 https://doi.org/10.1016/j.msea.2012.10.055
29 https://doi.org/10.1016/j.msea.2016.01.074
30 https://doi.org/10.1016/j.msea.2017.07.068
31 https://doi.org/10.1016/j.scriptamat.2004.03.017
32 https://doi.org/10.1016/j.scriptamat.2004.05.007
33 https://doi.org/10.1016/j.scriptamat.2013.01.005
34 https://doi.org/10.1016/s0749-6419(03)00078-0
35 https://doi.org/10.1016/s1359-6454(01)00251-8
36 https://doi.org/10.1016/s1359-6454(03)00324-0
37 https://doi.org/10.1016/s1359-6454(98)00293-6
38 schema:datePublished 2019-03
39 schema:datePublishedReg 2019-03-01
40 schema:description Creep age forming (CAF) is an advanced forming technology used for manufacturing large complex integrated panel components. However, in creep aging (CA), unlike in sole creep or aging procedure, the dislocation movement and the precipitation process occur simultaneously, leading to difficulty in understanding of the dynamic interplay between these two phenomena. In this work, taking 7050 Al alloy, a typical Al-Zn-Mg-Cu alloy, as the test material, an experimental scheme combining pre-deformation, artificial aging (AA), and tensile/compressive CA is designed to decouple and reveal the dynamic interaction mechanism of both phenomena. From AA experiments, the static interaction between dislocations and precipitates is studied, and then their dynamic interactions in CA and each evolution are comparatively investigated. The research shows that both total strain and strain rate increase with the increase in pre-deformation in tensile and compressive CA. However, the total creep strain in compressive CA is larger than that in tensile CA. In additional, the more the dislocations are induced, the sparser and more heterogeneous the overall distribution of precipitates becomes. For dynamic interplay, in the first stage of CA (I), under thermal-mechanical loading, the GP zones and η′ phases gradually nucleate and grow, while the effect of dislocation multiplication is dominant compared with dislocation annihilation, leading to an increase in total dislocation density. Soon, the dislocation movement is gradually hindered by tangling, pile-up, and the precipitates that have grown on the dislocation lines, this decreases the mobile dislocation density and results in a significant decrease in creep rate. In the second stage (II), the precipitates grow further, especially those lying on the dislocation lines; the effects of pinning and hindrance are enhanced until the dislocation multiplication and annihilation reach a dynamic equilibrium, and the total and mobile dislocation densities tend to be roughly unchanged, thus, the creep rate remains relatively constant in this stage.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N1dfc23090c774f7f9d851c51108a1608
45 N8ccebad3abf7467b99dc83c253559012
46 sg:journal.1136662
47 schema:name Dynamic interplay between dislocations and precipitates in creep aging of an Al-Zn-Mg-Cu alloy
48 schema:pagination 15-29
49 schema:productId N3ff516029c9447c483a0664e1b2b51df
50 N71dce1757d404a638affe86d5f7279a0
51 N94227cd3646f4bd681e7f36d1f51a21d
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110753315
53 https://doi.org/10.1007/s40436-018-0240-y
54 schema:sdDatePublished 2019-04-11T12:52
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N45a5fb8d7daa47a9aed7126df95e41d0
57 schema:url https://link.springer.com/10.1007%2Fs40436-018-0240-y
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N00b94a03263b4f108d5593a44feb75c1 rdf:first sg:person.016107527360.47
62 rdf:rest Ndb30b6dc191b487a95f476b321f6d9ac
63 N1dfc23090c774f7f9d851c51108a1608 schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 N3ff516029c9447c483a0664e1b2b51df schema:name doi
66 schema:value 10.1007/s40436-018-0240-y
67 rdf:type schema:PropertyValue
68 N45a5fb8d7daa47a9aed7126df95e41d0 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N71dce1757d404a638affe86d5f7279a0 schema:name dimensions_id
71 schema:value pub.1110753315
72 rdf:type schema:PropertyValue
73 N78f54844a7b34535abfbbe8c29baba30 rdf:first sg:person.013707427555.59
74 rdf:rest Nb6e1f94c14c440098f1ddc5429653d44
75 N8ccebad3abf7467b99dc83c253559012 schema:volumeNumber 7
76 rdf:type schema:PublicationVolume
77 N94227cd3646f4bd681e7f36d1f51a21d schema:name readcube_id
78 schema:value 88ea4ba6cf013a8867b8715628f6050ef9fa03ef85a6a57328934c76b1687f30
79 rdf:type schema:PropertyValue
80 Nb6e1f94c14c440098f1ddc5429653d44 rdf:first Nedbfccc2e20a41318d6920bb401d4bf0
81 rdf:rest rdf:nil
82 Ndb30b6dc191b487a95f476b321f6d9ac rdf:first sg:person.011226541457.70
83 rdf:rest N78f54844a7b34535abfbbe8c29baba30
84 Nedbfccc2e20a41318d6920bb401d4bf0 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
85 schema:familyName Wang
86 schema:givenName Yu-Fei
87 rdf:type schema:Person
88 Nf32e0f35e03d4ee395d90d4dd07b3efd rdf:first sg:person.01244210015.29
89 rdf:rest N00b94a03263b4f108d5593a44feb75c1
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
94 schema:name Materials Engineering
95 rdf:type schema:DefinedTerm
96 sg:grant.3795850 http://pending.schema.org/fundedItem sg:pub.10.1007/s40436-018-0240-y
97 rdf:type schema:MonetaryGrant
98 sg:journal.1136662 schema:issn 2095-3127
99 2195-3597
100 schema:name Advances in Manufacturing
101 rdf:type schema:Periodical
102 sg:person.011226541457.70 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
103 schema:familyName Lei
104 schema:givenName Chao
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011226541457.70
106 rdf:type schema:Person
107 sg:person.01244210015.29 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
108 schema:familyName Li
109 schema:givenName Heng
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244210015.29
111 rdf:type schema:Person
112 sg:person.013707427555.59 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
113 schema:familyName Zheng
114 schema:givenName Gao-Wei
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707427555.59
116 rdf:type schema:Person
117 sg:person.016107527360.47 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
118 schema:familyName Bian
119 schema:givenName Tian-Jun
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107527360.47
121 rdf:type schema:Person
122 sg:pub.10.1007/bf02652248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033642946
123 https://doi.org/10.1007/bf02652248
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0001-6160(53)90006-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001878254
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0001-6160(83)90221-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004737454
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0921-5093(93)90653-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1036334218
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.actamat.2004.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050559996
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.actamat.2010.12.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013757402
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.actamat.2016.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013485064
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijmachtools.2006.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016850170
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijmachtools.2010.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020368454
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijplas.2016.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017595107
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jallcom.2016.08.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021160050
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jallcom.2017.10.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092128359
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jmatprotec.2013.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010844319
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jmatprotec.2016.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018381031
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jmatprotec.2017.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099929875
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.matchar.2018.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105969262
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.matdes.2013.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049651879
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.matdes.2014.04.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019726757
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.matdes.2015.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029449303
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.matdes.2017.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084094799
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.micron.2016.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017063899
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.msea.2005.08.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015133500
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.msea.2008.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016721093
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.msea.2010.09.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006533243
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.msea.2012.10.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042581433
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.msea.2016.01.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041105693
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.msea.2017.07.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090858842
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.scriptamat.2004.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046532824
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.scriptamat.2004.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052308230
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.scriptamat.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020762340
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0749-6419(03)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023422545
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s1359-6454(01)00251-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019017243
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s1359-6454(03)00324-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044386958
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s1359-6454(98)00293-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012087177
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.440588.5 schema:alternateName Northwestern Polytechnical University
192 schema:name State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi’an, People’s Republic of China
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...