Improved thermal resistance network model of motorized spindle system considering temperature variation of cooling system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Yang Liu, Ya-Xin Ma, Qing-Yu Meng, Xi-Cheng Xin, Shuai-Shuai Ming

ABSTRACT

In the motorized spindle system of a computer numerical control (CNC) machine tool, internal heat sources are formed during high-speed rotation; these cause thermal errors and affect the machining accuracy. To address this problem, in this study, a thermal resistance network model of the motorized spindle system is established based on the heat transfer theory. The heat balance equations of the critical thermal nodes are established according to this model with Kirchhoff’s law. Then, they are solved using the Newmark-β method to obtain the temperature of each main component, and steady thermal analysis and transient thermal analysis of the motorized spindle system are performed. In order to obtain accurate thermal characteristics of the spindle system, the thermal-conduction resistance of each component and the thermal-convection resistance between the cooling system and the components of the spindle system are accurately obtained considering the effect of the heat exchanger on the temperature of the coolant in the cooling system. Simultaneously, high-precision magnetic temperature sensors are used to detect the temperature variation of the spindle in the CNC machining center at different rotational speeds. The experimental results demonstrate that the thermal resistance network model can predict the temperature field distribution in the spindle system with reasonable accuracy. In addition, the influences of the rotational speed and cooling conditions on the temperature increase of the main components of the spindle system are analyzed. Finally, a few recommendations are provided to improve the thermal performance of the spindle system under different operational conditions. More... »

PAGES

1-17

References to SciGraph publications

Journal

TITLE

Advances in Manufacturing

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40436-018-0239-4

DOI

http://dx.doi.org/10.1007/s40436-018-0239-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110065539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Mechanical Engineering and Automation, Northeastern University, 110819, Shenyang, Liaoning, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Mechanical Engineering and Automation, Northeastern University, 110819, Shenyang, Liaoning, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Ya-Xin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Mechanical Engineering and Automation, Northeastern University, 110819, Shenyang, Liaoning, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Qing-Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Mechanical Engineering and Automation, Northeastern University, 110819, Shenyang, Liaoning, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xin", 
        "givenName": "Xi-Cheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Mechanical Engineering and Automation, Northeastern University, 110819, Shenyang, Liaoning, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ming", 
        "givenName": "Shuai-Shuai", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007752236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.04.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008763645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016701456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2015.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019782758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030354819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-6350-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033489372", 
          "https://doi.org/10.1007/s00170-014-6350-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2010.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034220491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(99)00005-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041650326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2009.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046369405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e18070271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048629535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1349555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062068332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1557296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062072028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406214531219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063884674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406214531219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063884674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406216631573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406216631573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iciea.2012.6361083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095227050"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In the motorized spindle system of a computer numerical control (CNC) machine tool, internal heat sources are formed during high-speed rotation; these cause thermal errors and affect the machining accuracy. To address this problem, in this study, a thermal resistance network model of the motorized spindle system is established based on the heat transfer theory. The heat balance equations of the critical thermal nodes are established according to this model with Kirchhoff\u2019s law. Then, they are solved using the Newmark-\u03b2 method to obtain the temperature of each main component, and steady thermal analysis and transient thermal analysis of the motorized spindle system are performed. In order to obtain accurate thermal characteristics of the spindle system, the thermal-conduction resistance of each component and the thermal-convection resistance between the cooling system and the components of the spindle system are accurately obtained considering the effect of the heat exchanger on the temperature of the coolant in the cooling system. Simultaneously, high-precision magnetic temperature sensors are used to detect the temperature variation of the spindle in the CNC machining center at different rotational speeds. The experimental results demonstrate that the thermal resistance network model can predict the temperature field distribution in the spindle system with reasonable accuracy. In addition, the influences of the rotational speed and cooling conditions on the temperature increase of the main components of the spindle system are analyzed. Finally, a few recommendations are provided to improve the thermal performance of the spindle system under different operational conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40436-018-0239-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136662", 
        "issn": [
          "2095-3127", 
          "2195-3597"
        ], 
        "name": "Advances in Manufacturing", 
        "type": "Periodical"
      }
    ], 
    "name": "Improved thermal resistance network model of motorized spindle system considering temperature variation of cooling system", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "25dea2f9d74160ffa3cc6c9ae425846452da9ab2e2fb1523068170c7d45795fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40436-018-0239-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110065539"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40436-018-0239-4", 
      "https://app.dimensions.ai/details/publication/pub.1110065539"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000269_0000000269/records_56783_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40436-018-0239-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0239-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0239-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0239-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0239-4'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      40 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40436-018-0239-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Neecc93a125fa4b2aaa03382169440e0d
4 schema:citation sg:pub.10.1007/s00170-014-6350-1
5 https://doi.org/10.1016/j.applthermaleng.2015.04.064
6 https://doi.org/10.1016/j.cirp.2010.03.021
7 https://doi.org/10.1016/j.ijmachtools.2006.02.018
8 https://doi.org/10.1016/j.ijmachtools.2006.03.007
9 https://doi.org/10.1016/j.ijmachtools.2006.06.018
10 https://doi.org/10.1016/j.ijmachtools.2009.10.001
11 https://doi.org/10.1016/j.triboint.2015.12.029
12 https://doi.org/10.1016/s0890-6955(99)00005-x
13 https://doi.org/10.1109/iciea.2012.6361083
14 https://doi.org/10.1115/1.1349555
15 https://doi.org/10.1115/1.1557296
16 https://doi.org/10.1177/0954406214531219
17 https://doi.org/10.1177/0954406216631573
18 https://doi.org/10.3390/e18070271
19 schema:datePublished 2018-12
20 schema:datePublishedReg 2018-12-01
21 schema:description In the motorized spindle system of a computer numerical control (CNC) machine tool, internal heat sources are formed during high-speed rotation; these cause thermal errors and affect the machining accuracy. To address this problem, in this study, a thermal resistance network model of the motorized spindle system is established based on the heat transfer theory. The heat balance equations of the critical thermal nodes are established according to this model with Kirchhoff’s law. Then, they are solved using the Newmark-β method to obtain the temperature of each main component, and steady thermal analysis and transient thermal analysis of the motorized spindle system are performed. In order to obtain accurate thermal characteristics of the spindle system, the thermal-conduction resistance of each component and the thermal-convection resistance between the cooling system and the components of the spindle system are accurately obtained considering the effect of the heat exchanger on the temperature of the coolant in the cooling system. Simultaneously, high-precision magnetic temperature sensors are used to detect the temperature variation of the spindle in the CNC machining center at different rotational speeds. The experimental results demonstrate that the thermal resistance network model can predict the temperature field distribution in the spindle system with reasonable accuracy. In addition, the influences of the rotational speed and cooling conditions on the temperature increase of the main components of the spindle system are analyzed. Finally, a few recommendations are provided to improve the thermal performance of the spindle system under different operational conditions.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf sg:journal.1136662
26 schema:name Improved thermal resistance network model of motorized spindle system considering temperature variation of cooling system
27 schema:pagination 1-17
28 schema:productId N62385ebb10ce45f3b70af6b9b9874f17
29 N6df64cc199474febabb7769d9ee7c3c7
30 Nb23d8d9b4e864f9183f18a2ee72378b8
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065539
32 https://doi.org/10.1007/s40436-018-0239-4
33 schema:sdDatePublished 2019-04-11T08:10
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nfa6be309c45d457fadd0f7a2172804b2
36 schema:url https://link.springer.com/10.1007%2Fs40436-018-0239-4
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N02abcc002706467dad74c0fbe95cc525 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
41 schema:familyName Ma
42 schema:givenName Ya-Xin
43 rdf:type schema:Person
44 N108378453cab45ba97b5f9585c62d70a schema:affiliation https://www.grid.ac/institutes/grid.412252.2
45 schema:familyName Liu
46 schema:givenName Yang
47 rdf:type schema:Person
48 N127590eaabb940afa4c875ad43e5dc58 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
49 schema:familyName Xin
50 schema:givenName Xi-Cheng
51 rdf:type schema:Person
52 N38e3c48874844333a6f4c154bbf6a5dc rdf:first N127590eaabb940afa4c875ad43e5dc58
53 rdf:rest N79e6a83cd2b94d57913a27a39822ad39
54 N5b17618fd2a34d5f828e0cb879098708 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
55 schema:familyName Meng
56 schema:givenName Qing-Yu
57 rdf:type schema:Person
58 N62385ebb10ce45f3b70af6b9b9874f17 schema:name dimensions_id
59 schema:value pub.1110065539
60 rdf:type schema:PropertyValue
61 N6df64cc199474febabb7769d9ee7c3c7 schema:name readcube_id
62 schema:value 25dea2f9d74160ffa3cc6c9ae425846452da9ab2e2fb1523068170c7d45795fc
63 rdf:type schema:PropertyValue
64 N79e6a83cd2b94d57913a27a39822ad39 rdf:first Nb28ab8c0c5814511a204e1999c43c181
65 rdf:rest rdf:nil
66 Nb23d8d9b4e864f9183f18a2ee72378b8 schema:name doi
67 schema:value 10.1007/s40436-018-0239-4
68 rdf:type schema:PropertyValue
69 Nb28ab8c0c5814511a204e1999c43c181 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
70 schema:familyName Ming
71 schema:givenName Shuai-Shuai
72 rdf:type schema:Person
73 Ne2349203b28c4492821ab82a9753b823 rdf:first N02abcc002706467dad74c0fbe95cc525
74 rdf:rest Nf2ab2f7fe4454d448ba2198125bc3f41
75 Neecc93a125fa4b2aaa03382169440e0d rdf:first N108378453cab45ba97b5f9585c62d70a
76 rdf:rest Ne2349203b28c4492821ab82a9753b823
77 Nf2ab2f7fe4454d448ba2198125bc3f41 rdf:first N5b17618fd2a34d5f828e0cb879098708
78 rdf:rest N38e3c48874844333a6f4c154bbf6a5dc
79 Nfa6be309c45d457fadd0f7a2172804b2 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
85 schema:name Interdisciplinary Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1136662 schema:issn 2095-3127
88 2195-3597
89 schema:name Advances in Manufacturing
90 rdf:type schema:Periodical
91 sg:pub.10.1007/s00170-014-6350-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033489372
92 https://doi.org/10.1007/s00170-014-6350-1
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.applthermaleng.2015.04.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008763645
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.cirp.2010.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034220491
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.ijmachtools.2006.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030354819
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.ijmachtools.2006.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007752236
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.ijmachtools.2006.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016701456
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.ijmachtools.2009.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046369405
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.triboint.2015.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019782758
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0890-6955(99)00005-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041650326
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/iciea.2012.6361083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095227050
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1115/1.1349555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062068332
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1115/1.1557296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072028
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1177/0954406214531219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063884674
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1177/0954406216631573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063885298
119 rdf:type schema:CreativeWork
120 https://doi.org/10.3390/e18070271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048629535
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.412252.2 schema:alternateName Northeastern University
123 schema:name School of Mechanical Engineering and Automation, Northeastern University, 110819, Shenyang, Liaoning, People’s Republic of China
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...