Application of grey relational analysis based on Taguchi method for optimizing machining parameters in hard turning of high chrome cast ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Ali Kalyon, Mustafa Günay, Dursun Özyürek

ABSTRACT

High chrome white cast iron is particularly preferred in the production of machine parts requiring high wear resistance. Although the amount of chrome in these materials provides high wear and corrosion resistances, it makes their machinability difficult. This study presents an application of the grey relational analysis based on the Taguchi method in order to optimize chrome ratio, cutting speed, feed rate, and cutting depth for the resultant cutting force (FR) and surface roughness (Ra) when hard turning high chrome cast iron with a cubic boron nitride (CBN) insert. The effect levels of machining parameters on FR and Ra were examined by an analysis of variance (ANOVA). A grey relational grade (GRG) was calculated to simultaneously minimize FR and Ra. The ANOVA results based on GRG indicated that the feed rate, followed by the cutting depth, was the main parameter and contributed to responses. Optimal levels of parameters were found when the chrome ratio, cutting speed, feed rate, and cutting depth were 12%, 100 m/min, 0.05 mm/r, and 0.1 mm, respectively, based on the multiresponse optimization results obtained by considering the maximum signal to noise (S/N) ratio of GRG. Confirmation results were verified by calculating the confidence level within the interval width. More... »

PAGES

1-11

References to SciGraph publications

Journal

TITLE

Advances in Manufacturing

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40436-018-0231-z

DOI

http://dx.doi.org/10.1007/s40436-018-0231-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106158905


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karab\u00fck University", 
          "id": "https://www.grid.ac/institutes/grid.440448.8", 
          "name": [
            "Department of Manufacturing Engineering, Karab\u00fck University, 078050, Karab\u00fck, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalyon", 
        "givenName": "Ali", 
        "id": "sg:person.016436765217.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436765217.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karab\u00fck University", 
          "id": "https://www.grid.ac/institutes/grid.440448.8", 
          "name": [
            "Department of Mechanical Engineering, Karab\u00fck University, 078050, Karab\u00fck, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcnay", 
        "givenName": "Mustafa", 
        "id": "sg:person.012331045225.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331045225.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karab\u00fck University", 
          "id": "https://www.grid.ac/institutes/grid.440448.8", 
          "name": [
            "Department of Manufacturing Engineering, Karab\u00fck University, 078050, Karab\u00fck, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00d6zy\u00fcrek", 
        "givenName": "Dursun", 
        "id": "sg:person.07733714017.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07733714017.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40436-016-0134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001141729", 
          "https://doi.org/10.1007/s40436-016-0134-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2013.01.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002933655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2006.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004255987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2016.06.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12289-009-0679-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005944172", 
          "https://doi.org/10.1007/s12289-009-0679-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12289-009-0679-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005944172", 
          "https://doi.org/10.1007/s12289-009-0679-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/htmp-2014-0110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012635030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12666-013-0369-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013454830", 
          "https://doi.org/10.1007/s12666-013-0369-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2004.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013879229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.06.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015135704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10910340903451456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016112194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40735-015-0026-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017535705", 
          "https://doi.org/10.1007/s40735-015-0026-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2011.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018830336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2004.04.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020506567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020849908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procir.2012.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024653916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(99)00311-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029003667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmhm.2009.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030334165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2013.09.222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033221470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039073780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0429-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043798307", 
          "https://doi.org/10.1007/s00170-006-0429-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0429-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043798307", 
          "https://doi.org/10.1007/s00170-006-0429-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2006.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044137428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2012.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048134238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0737-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049016872", 
          "https://doi.org/10.1007/s00170-006-0737-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0737-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049016872", 
          "https://doi.org/10.1007/s00170-006-0737-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049113301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60018-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050332499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17222/mit.2014.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068304531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5755/j01.mech.23.3.14363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090429962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470258354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-018-3204-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101770673", 
          "https://doi.org/10.1007/s13369-018-3204-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-018-3204-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101770673", 
          "https://doi.org/10.1007/s13369-018-3204-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-018-3204-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101770673", 
          "https://doi.org/10.1007/s13369-018-3204-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "High chrome white cast iron is particularly preferred in the production of machine parts requiring high wear resistance. Although the amount of chrome in these materials provides high wear and corrosion resistances, it makes their machinability difficult. This study presents an application of the grey relational analysis based on the Taguchi method in order to optimize chrome ratio, cutting speed, feed rate, and cutting depth for the resultant cutting force (FR) and surface roughness (Ra) when hard turning high chrome cast iron with a cubic boron nitride (CBN) insert. The effect levels of machining parameters on FR and Ra were examined by an analysis of variance (ANOVA). A grey relational grade (GRG) was calculated to simultaneously minimize FR and Ra. The ANOVA results based on GRG indicated that the feed rate, followed by the cutting depth, was the main parameter and contributed to responses. Optimal levels of parameters were found when the chrome ratio, cutting speed, feed rate, and cutting depth were 12%, 100 m/min, 0.05 mm/r, and 0.1 mm, respectively, based on the multiresponse optimization results obtained by considering the maximum signal to noise (S/N) ratio of GRG. Confirmation results were verified by calculating the confidence level within the interval width.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40436-018-0231-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136662", 
        "issn": [
          "2095-3127", 
          "2195-3597"
        ], 
        "name": "Advances in Manufacturing", 
        "type": "Periodical"
      }
    ], 
    "name": "Application of grey relational analysis based on Taguchi method for optimizing machining parameters in hard turning of high chrome cast iron", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e197ab5b9b970e485df108784678b5b6c193351d566362eb5d195faa8d27f209"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40436-018-0231-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106158905"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40436-018-0231-z", 
      "https://app.dimensions.ai/details/publication/pub.1106158905"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40436-018-0231-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0231-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0231-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0231-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40436-018-0231-z'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      54 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40436-018-0231-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7ecd106765d4422f866e7f4eef1da249
4 schema:citation sg:pub.10.1007/s00170-006-0429-2
5 sg:pub.10.1007/s00170-006-0737-6
6 sg:pub.10.1007/s12289-009-0679-2
7 sg:pub.10.1007/s12666-013-0369-0
8 sg:pub.10.1007/s13369-018-3204-4
9 sg:pub.10.1007/s40436-016-0134-9
10 sg:pub.10.1007/s40735-015-0026-8
11 https://doi.org/10.1002/9780470258354
12 https://doi.org/10.1016/j.ijmachtools.2006.03.018
13 https://doi.org/10.1016/j.ijmachtools.2011.02.001
14 https://doi.org/10.1016/j.ijrmhm.2009.11.011
15 https://doi.org/10.1016/j.jclepro.2014.12.020
16 https://doi.org/10.1016/j.jmatprotec.2004.04.331
17 https://doi.org/10.1016/j.matdes.2004.11.021
18 https://doi.org/10.1016/j.matdes.2006.02.006
19 https://doi.org/10.1016/j.matdes.2013.06.045
20 https://doi.org/10.1016/j.measurement.2012.09.023
21 https://doi.org/10.1016/j.measurement.2016.06.055
22 https://doi.org/10.1016/j.msea.2007.01.011
23 https://doi.org/10.1016/j.procir.2012.05.016
24 https://doi.org/10.1016/j.proeng.2013.09.222
25 https://doi.org/10.1016/j.surfcoat.2006.04.026
26 https://doi.org/10.1016/j.wear.2013.01.079
27 https://doi.org/10.1016/s0007-8506(07)60018-3
28 https://doi.org/10.1016/s0924-0136(99)00311-8
29 https://doi.org/10.1080/10910340903451456
30 https://doi.org/10.1515/htmp-2014-0110
31 https://doi.org/10.17222/mit.2014.270
32 https://doi.org/10.5755/j01.mech.23.3.14363
33 schema:datePublished 2018-12
34 schema:datePublishedReg 2018-12-01
35 schema:description High chrome white cast iron is particularly preferred in the production of machine parts requiring high wear resistance. Although the amount of chrome in these materials provides high wear and corrosion resistances, it makes their machinability difficult. This study presents an application of the grey relational analysis based on the Taguchi method in order to optimize chrome ratio, cutting speed, feed rate, and cutting depth for the resultant cutting force (FR) and surface roughness (Ra) when hard turning high chrome cast iron with a cubic boron nitride (CBN) insert. The effect levels of machining parameters on FR and Ra were examined by an analysis of variance (ANOVA). A grey relational grade (GRG) was calculated to simultaneously minimize FR and Ra. The ANOVA results based on GRG indicated that the feed rate, followed by the cutting depth, was the main parameter and contributed to responses. Optimal levels of parameters were found when the chrome ratio, cutting speed, feed rate, and cutting depth were 12%, 100 m/min, 0.05 mm/r, and 0.1 mm, respectively, based on the multiresponse optimization results obtained by considering the maximum signal to noise (S/N) ratio of GRG. Confirmation results were verified by calculating the confidence level within the interval width.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1136662
40 schema:name Application of grey relational analysis based on Taguchi method for optimizing machining parameters in hard turning of high chrome cast iron
41 schema:pagination 1-11
42 schema:productId N059d52008ce24268b01301fc6ec3bcb4
43 Nb1bf18ee9ed74fcf856e64f30ab262f4
44 Nbe2f8c8f743147fb9df8e45e7e2f9f7c
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106158905
46 https://doi.org/10.1007/s40436-018-0231-z
47 schema:sdDatePublished 2019-04-10T13:11
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nb81edbbbee4d4c5584f7a432640fe236
50 schema:url http://link.springer.com/10.1007/s40436-018-0231-z
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N059d52008ce24268b01301fc6ec3bcb4 schema:name doi
55 schema:value 10.1007/s40436-018-0231-z
56 rdf:type schema:PropertyValue
57 N7ecd106765d4422f866e7f4eef1da249 rdf:first sg:person.016436765217.37
58 rdf:rest Nea1f64f22fa5409b9afa394ec0c36303
59 Nadfcf63b3974490ba529f6a184125dda rdf:first sg:person.07733714017.80
60 rdf:rest rdf:nil
61 Nb1bf18ee9ed74fcf856e64f30ab262f4 schema:name dimensions_id
62 schema:value pub.1106158905
63 rdf:type schema:PropertyValue
64 Nb81edbbbee4d4c5584f7a432640fe236 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nbe2f8c8f743147fb9df8e45e7e2f9f7c schema:name readcube_id
67 schema:value e197ab5b9b970e485df108784678b5b6c193351d566362eb5d195faa8d27f209
68 rdf:type schema:PropertyValue
69 Nea1f64f22fa5409b9afa394ec0c36303 rdf:first sg:person.012331045225.59
70 rdf:rest Nadfcf63b3974490ba529f6a184125dda
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
75 schema:name Materials Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1136662 schema:issn 2095-3127
78 2195-3597
79 schema:name Advances in Manufacturing
80 rdf:type schema:Periodical
81 sg:person.012331045225.59 schema:affiliation https://www.grid.ac/institutes/grid.440448.8
82 schema:familyName Günay
83 schema:givenName Mustafa
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331045225.59
85 rdf:type schema:Person
86 sg:person.016436765217.37 schema:affiliation https://www.grid.ac/institutes/grid.440448.8
87 schema:familyName Kalyon
88 schema:givenName Ali
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436765217.37
90 rdf:type schema:Person
91 sg:person.07733714017.80 schema:affiliation https://www.grid.ac/institutes/grid.440448.8
92 schema:familyName Özyürek
93 schema:givenName Dursun
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07733714017.80
95 rdf:type schema:Person
96 sg:pub.10.1007/s00170-006-0429-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043798307
97 https://doi.org/10.1007/s00170-006-0429-2
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00170-006-0737-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049016872
100 https://doi.org/10.1007/s00170-006-0737-6
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s12289-009-0679-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005944172
103 https://doi.org/10.1007/s12289-009-0679-2
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s12666-013-0369-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013454830
106 https://doi.org/10.1007/s12666-013-0369-0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s13369-018-3204-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101770673
109 https://doi.org/10.1007/s13369-018-3204-4
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s40436-016-0134-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001141729
112 https://doi.org/10.1007/s40436-016-0134-9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s40735-015-0026-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017535705
115 https://doi.org/10.1007/s40735-015-0026-8
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/9780470258354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661859
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijmachtools.2006.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020849908
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijmachtools.2011.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018830336
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijrmhm.2009.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030334165
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jclepro.2014.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039073780
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jmatprotec.2004.04.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020506567
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.matdes.2004.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013879229
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.matdes.2006.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004255987
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.matdes.2013.06.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015135704
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.measurement.2012.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048134238
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.measurement.2016.06.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004343199
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.msea.2007.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049113301
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.procir.2012.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024653916
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.proeng.2013.09.222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033221470
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.surfcoat.2006.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044137428
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.wear.2013.01.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002933655
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0007-8506(07)60018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050332499
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0924-0136(99)00311-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029003667
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/10910340903451456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016112194
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1515/htmp-2014-0110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012635030
156 rdf:type schema:CreativeWork
157 https://doi.org/10.17222/mit.2014.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068304531
158 rdf:type schema:CreativeWork
159 https://doi.org/10.5755/j01.mech.23.3.14363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090429962
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.440448.8 schema:alternateName Karabük University
162 schema:name Department of Manufacturing Engineering, Karabük University, 078050, Karabük, Turkey
163 Department of Mechanical Engineering, Karabük University, 078050, Karabük, Turkey
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...