Analytic hierarchy process based approximation of high-order continuous systems using TLBO algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

S. P. Singh, Varsha Singh, V. P. Singh

ABSTRACT

This paper presents an analytic hierarchy process based approach for approximation of stable high-order systems using teacher–learner-based-optimization (TLBO) algorithm. In this method, the stable approximant is derived by minimizing the errors of time moments and of Markov parameters of system and its approximant. Being free from algorithm-specific parameters, the TLBO algorithm is used for minimizing the objective function. The Hurwitz criterion is used to ensure the stability of approximant. The first time moment of the system is retained in approximant to guarantee the matching of steady states of system and approximant. The distinctive feature of this work is that the multi-objective problem of minimization of errors of time moments and of Markov parameters is converted into single objective problem by assigning some weights to different objectives using analytic hierarchy process. Also, the proposed method always produces stable approximant for stable high-order system. The results of proposed approach are compared with other existing techniques. To conclude the superiority of proposed approach, a comparative study is performed using the step responses and time domain analysis. The efficacy and systematic nature of proposed approach is shown with the help of two test systems. More... »

PAGES

53-60

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40435-018-0436-9

DOI

http://dx.doi.org/10.1007/s40435-018-0436-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104122032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "S. P.", 
        "id": "sg:person.016351047276.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016351047276.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Raipur", 
          "id": "https://www.grid.ac/institutes/grid.444688.2", 
          "name": [
            "Department of Electrical Engineering, National Institute of Technology, Raipur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Varsha", 
        "id": "sg:person.013660721366.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660721366.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Raipur", 
          "id": "https://www.grid.ac/institutes/grid.444688.2", 
          "name": [
            "Department of Electrical Engineering, National Institute of Technology, Raipur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "V. P.", 
        "id": "sg:person.016277170221.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016277170221.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.sysconle.2016.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012242849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cad.2010.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012871994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40313-016-0282-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013979046", 
          "https://doi.org/10.1007/s40313-016-0282-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40313-016-0282-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013979046", 
          "https://doi.org/10.1007/s40313-016-0282-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2015.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015099558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2009.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015441007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-83555-1_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023442639", 
          "https://doi.org/10.1007/978-3-642-83555-1_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207728008967043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023569679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207177908922678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023662455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/ijest.v4i1.11s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028529734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11518-006-0151-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030772296", 
          "https://doi.org/10.1007/s11518-006-0151-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sysconle.2013.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031556836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78841-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032276440", 
          "https://doi.org/10.1007/978-3-540-78841-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78841-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032276440", 
          "https://doi.org/10.1007/978-3-540-78841-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207178108922977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040295026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2011.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041059907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207177508922004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050899834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40313-016-0284-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052792098", 
          "https://doi.org/10.1007/s40313-016-0284-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40313-016-0284-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052792098", 
          "https://doi.org/10.1007/s40313-016-0284-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19800248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056765846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cta:20041305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056847463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/piee.1978.0242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056899448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.362850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061244315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2003.822878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2004.826396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218126617500384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062952885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijmic.2012.048918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067474281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3906/elk-1112-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071567541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5755/j01.itc.43.1.4587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073103179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2017.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074189940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/peoco.2011.5970421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095607011"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "This paper presents an analytic hierarchy process based approach for approximation of stable high-order systems using teacher\u2013learner-based-optimization (TLBO) algorithm. In this method, the stable approximant is derived by minimizing the errors of time moments and of Markov parameters of system and its approximant. Being free from algorithm-specific parameters, the TLBO algorithm is used for minimizing the objective function. The Hurwitz criterion is used to ensure the stability of approximant. The first time moment of the system is retained in approximant to guarantee the matching of steady states of system and approximant. The distinctive feature of this work is that the multi-objective problem of minimization of errors of time moments and of Markov parameters is converted into single objective problem by assigning some weights to different objectives using analytic hierarchy process. Also, the proposed method always produces stable approximant for stable high-order system. The results of proposed approach are compared with other existing techniques. To conclude the superiority of proposed approach, a comparative study is performed using the step responses and time domain analysis. The efficacy and systematic nature of proposed approach is shown with the help of two test systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40435-018-0436-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136728", 
        "issn": [
          "2195-268X", 
          "2195-2698"
        ], 
        "name": "International Journal of Dynamics and Control", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Analytic hierarchy process based approximation of high-order continuous systems using TLBO algorithm", 
    "pagination": "53-60", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1a02d4c82502bc0589e04da466a7fb6b7d6a420274b3ec090ff243ceb6a3305"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40435-018-0436-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104122032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40435-018-0436-9", 
      "https://app.dimensions.ai/details/publication/pub.1104122032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40435-018-0436-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40435-018-0436-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40435-018-0436-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40435-018-0436-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40435-018-0436-9'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40435-018-0436-9 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N6acb40cec402453680f8c7ac365b2802
4 schema:citation sg:pub.10.1007/978-3-540-78841-6
5 sg:pub.10.1007/978-3-642-83555-1_5
6 sg:pub.10.1007/s11518-006-0151-5
7 sg:pub.10.1007/s40313-016-0282-y
8 sg:pub.10.1007/s40313-016-0284-9
9 https://doi.org/10.1016/j.apm.2015.07.014
10 https://doi.org/10.1016/j.cad.2010.12.015
11 https://doi.org/10.1016/j.engappai.2017.01.008
12 https://doi.org/10.1016/j.ins.2011.08.006
13 https://doi.org/10.1016/j.jfranklin.2009.10.016
14 https://doi.org/10.1016/j.sysconle.2013.10.011
15 https://doi.org/10.1016/j.sysconle.2016.11.007
16 https://doi.org/10.1049/el:19800248
17 https://doi.org/10.1049/ip-cta:20041305
18 https://doi.org/10.1049/piee.1978.0242
19 https://doi.org/10.1080/00207177508922004
20 https://doi.org/10.1080/00207177908922678
21 https://doi.org/10.1080/00207178108922977
22 https://doi.org/10.1080/00207728008967043
23 https://doi.org/10.1109/9.362850
24 https://doi.org/10.1109/peoco.2011.5970421
25 https://doi.org/10.1109/tac.2003.822878
26 https://doi.org/10.1109/tsmcb.2004.826396
27 https://doi.org/10.1142/s0218126617500384
28 https://doi.org/10.1504/ijmic.2012.048918
29 https://doi.org/10.3906/elk-1112-31
30 https://doi.org/10.4314/ijest.v4i1.11s
31 https://doi.org/10.5755/j01.itc.43.1.4587
32 schema:datePublished 2019-03
33 schema:datePublishedReg 2019-03-01
34 schema:description This paper presents an analytic hierarchy process based approach for approximation of stable high-order systems using teacher–learner-based-optimization (TLBO) algorithm. In this method, the stable approximant is derived by minimizing the errors of time moments and of Markov parameters of system and its approximant. Being free from algorithm-specific parameters, the TLBO algorithm is used for minimizing the objective function. The Hurwitz criterion is used to ensure the stability of approximant. The first time moment of the system is retained in approximant to guarantee the matching of steady states of system and approximant. The distinctive feature of this work is that the multi-objective problem of minimization of errors of time moments and of Markov parameters is converted into single objective problem by assigning some weights to different objectives using analytic hierarchy process. Also, the proposed method always produces stable approximant for stable high-order system. The results of proposed approach are compared with other existing techniques. To conclude the superiority of proposed approach, a comparative study is performed using the step responses and time domain analysis. The efficacy and systematic nature of proposed approach is shown with the help of two test systems.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N1eadaa44c42d49188c1cc0826ba02149
39 Na2424bb4c7bf49fdaade65ff1baaf6f0
40 sg:journal.1136728
41 schema:name Analytic hierarchy process based approximation of high-order continuous systems using TLBO algorithm
42 schema:pagination 53-60
43 schema:productId N603379d3946843a0b90fd2f4d05159a6
44 N6941071f9e3e466b8ed63b3ce93a0a56
45 Nf8ab006d22c04da5a3afeb727e284954
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104122032
47 https://doi.org/10.1007/s40435-018-0436-9
48 schema:sdDatePublished 2019-04-11T12:43
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N6cdd68703cdc47c5959d6f2bb9e66232
51 schema:url https://link.springer.com/10.1007%2Fs40435-018-0436-9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1eadaa44c42d49188c1cc0826ba02149 schema:volumeNumber 7
56 rdf:type schema:PublicationVolume
57 N603379d3946843a0b90fd2f4d05159a6 schema:name doi
58 schema:value 10.1007/s40435-018-0436-9
59 rdf:type schema:PropertyValue
60 N6941071f9e3e466b8ed63b3ce93a0a56 schema:name dimensions_id
61 schema:value pub.1104122032
62 rdf:type schema:PropertyValue
63 N6acb40cec402453680f8c7ac365b2802 rdf:first sg:person.016351047276.48
64 rdf:rest Nedfeb63584d04a54ae8dee10eb045999
65 N6cdd68703cdc47c5959d6f2bb9e66232 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N9aea4b82abc7447cbb2260397dffd0af rdf:first sg:person.016277170221.22
68 rdf:rest rdf:nil
69 Na2424bb4c7bf49fdaade65ff1baaf6f0 schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 Nedfeb63584d04a54ae8dee10eb045999 rdf:first sg:person.013660721366.34
72 rdf:rest N9aea4b82abc7447cbb2260397dffd0af
73 Nf8ab006d22c04da5a3afeb727e284954 schema:name readcube_id
74 schema:value f1a02d4c82502bc0589e04da466a7fb6b7d6a420274b3ec090ff243ceb6a3305
75 rdf:type schema:PropertyValue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Numerical and Computational Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1136728 schema:issn 2195-268X
83 2195-2698
84 schema:name International Journal of Dynamics and Control
85 rdf:type schema:Periodical
86 sg:person.013660721366.34 schema:affiliation https://www.grid.ac/institutes/grid.444688.2
87 schema:familyName Singh
88 schema:givenName Varsha
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660721366.34
90 rdf:type schema:Person
91 sg:person.016277170221.22 schema:affiliation https://www.grid.ac/institutes/grid.444688.2
92 schema:familyName Singh
93 schema:givenName V. P.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016277170221.22
95 rdf:type schema:Person
96 sg:person.016351047276.48 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
97 schema:familyName Singh
98 schema:givenName S. P.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016351047276.48
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-540-78841-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032276440
102 https://doi.org/10.1007/978-3-540-78841-6
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-642-83555-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023442639
105 https://doi.org/10.1007/978-3-642-83555-1_5
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11518-006-0151-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030772296
108 https://doi.org/10.1007/s11518-006-0151-5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s40313-016-0282-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013979046
111 https://doi.org/10.1007/s40313-016-0282-y
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s40313-016-0284-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052792098
114 https://doi.org/10.1007/s40313-016-0284-9
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.apm.2015.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015099558
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.cad.2010.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012871994
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.engappai.2017.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074189940
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ins.2011.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041059907
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jfranklin.2009.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015441007
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.sysconle.2013.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031556836
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.sysconle.2016.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012242849
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1049/el:19800248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056765846
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1049/ip-cta:20041305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056847463
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1049/piee.1978.0242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056899448
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/00207177508922004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050899834
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/00207177908922678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023662455
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/00207178108922977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040295026
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/00207728008967043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023569679
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/9.362850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061244315
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/peoco.2011.5970421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095607011
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tac.2003.822878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475558
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tsmcb.2004.826396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796309
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1142/s0218126617500384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062952885
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1504/ijmic.2012.048918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067474281
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3906/elk-1112-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071567541
157 rdf:type schema:CreativeWork
158 https://doi.org/10.4314/ijest.v4i1.11s schema:sameAs https://app.dimensions.ai/details/publication/pub.1028529734
159 rdf:type schema:CreativeWork
160 https://doi.org/10.5755/j01.itc.43.1.4587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073103179
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
163 schema:name Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.444688.2 schema:alternateName National Institute of Technology Raipur
166 schema:name Department of Electrical Engineering, National Institute of Technology, Raipur, India
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...