An emergency braking controller based on extremum seeking with experimental implementation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Erkin Dinçmen, Tunç Altınel

ABSTRACT

An extremum seeking scheme is developed for maximizing the longitudinal tire forces of the road vehicles during emergency braking situations. If the road condition is known, then a conventional braking controller could generate required braking moment to track the slip set point which belongs to that road condition. However, estimating the road condition is not an easy task and it brings additional computation effort. Rather than that, a self optimization algorithm is presented in this paper without relying on road condition estimation. The developed controller searches optimum operation point for getting maximum friction force. Computer simulations show the effectiveness of the self optimization routine. To validate the real time applicability of the algorithm, an electromechanical braking test system is used for the experiments. Due to the limited measurements from the experimental system, force and moment observers are designed to calculate necessary control inputs for maximizing the friction potential, i.e. the braking force. Via the experimental study, it has been shown that the developed self optimizing controller is fast, accurate, and operable on a real braking system. More... »

PAGES

270-283

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40435-016-0286-2

DOI

http://dx.doi.org/10.1007/s40435-016-0286-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035346898


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "I\u015f\u0131k University", 
          "id": "https://www.grid.ac/institutes/grid.58192.37", 
          "name": [
            "Department of Mechanical Engineering, I\u015f\u0131k University, 34980, \u015eile, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Din\u00e7men", 
        "givenName": "Erkin", 
        "id": "sg:person.010203530637.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203530637.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istanbul Technical University", 
          "id": "https://www.grid.ac/institutes/grid.10516.33", 
          "name": [
            "Department of Mechanical Engineering, Istanbul Technical University, G\u00fcm\u00fc\u015fsuyu, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alt\u0131nel", 
        "givenName": "Tun\u00e7", 
        "id": "sg:person.012143777553.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012143777553.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0967-0661(00)00047-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000658114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2005.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005773700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acs.933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006078405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2011.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006583563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2007.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011978612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-1098(99)00183-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019625361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2008.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023651596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207720701409637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-014-0466-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025310331", 
          "https://doi.org/10.1007/s12555-014-0466-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/896859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025423180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conengprac.2010.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026547071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(74)90053-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031298969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(74)90053-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031298969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423114.2011.577224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034730346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-1098(03)00105-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034931306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-1098(03)00105-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034931306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2010.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042983361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2007.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046827855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423114.2012.690041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051060419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00423114.2015.1026831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051532480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/87.370698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061241530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2007.892389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061476436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2005.863660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061572284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2012.2229465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061573396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2013.2241769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2009.2023098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061623872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2015.2492682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061693633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2005.853479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061818654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2011.2125806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061820753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2015.2413451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061822940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1317231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062067789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4316/aece.2013.01006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072511604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1993.325642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086261279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vss.2014.6881160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095239527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109725938", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420065619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725938"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "An extremum seeking scheme is developed for maximizing the longitudinal tire forces of the road vehicles during emergency braking situations. If the road condition is known, then a conventional braking controller could generate required braking moment to track the slip set point which belongs to that road condition. However, estimating the road condition is not an easy task and it brings additional computation effort. Rather than that, a self optimization algorithm is presented in this paper without relying on road condition estimation. The developed controller searches optimum operation point for getting maximum friction force. Computer simulations show the effectiveness of the self optimization routine. To validate the real time applicability of the algorithm, an electromechanical braking test system is used for the experiments. Due to the limited measurements from the experimental system, force and moment observers are designed to calculate necessary control inputs for maximizing the friction potential, i.e. the braking force. Via the experimental study, it has been shown that the developed self optimizing controller is fast, accurate, and operable on a real braking system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40435-016-0286-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136728", 
        "issn": [
          "2195-268X", 
          "2195-2698"
        ], 
        "name": "International Journal of Dynamics and Control", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "An emergency braking controller based on extremum seeking with experimental implementation", 
    "pagination": "270-283", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a860be02259b53c47801546b34b46fddced9483e9a3aa35b57f18b4d0dd190f7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40435-016-0286-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035346898"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40435-016-0286-2", 
      "https://app.dimensions.ai/details/publication/pub.1035346898"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40435-016-0286-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40435-016-0286-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40435-016-0286-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40435-016-0286-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40435-016-0286-2'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40435-016-0286-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nbaf1fc13998c487c82bbc9005f36b735
4 schema:citation sg:pub.10.1007/s12555-014-0466-9
5 https://app.dimensions.ai/details/publication/pub.1109725938
6 https://doi.org/10.1002/acs.933
7 https://doi.org/10.1016/0005-1098(74)90053-3
8 https://doi.org/10.1016/j.automatica.2005.03.030
9 https://doi.org/10.1016/j.automatica.2007.03.009
10 https://doi.org/10.1016/j.automatica.2007.08.020
11 https://doi.org/10.1016/j.conengprac.2010.03.015
12 https://doi.org/10.1016/j.engappai.2010.06.011
13 https://doi.org/10.1016/j.trc.2008.02.003
14 https://doi.org/10.1016/j.trc.2011.09.004
15 https://doi.org/10.1016/s0005-1098(03)00105-5
16 https://doi.org/10.1016/s0005-1098(99)00183-1
17 https://doi.org/10.1016/s0967-0661(00)00047-2
18 https://doi.org/10.1080/00207720701409637
19 https://doi.org/10.1080/00423114.2011.577224
20 https://doi.org/10.1080/00423114.2012.690041
21 https://doi.org/10.1080/00423114.2015.1026831
22 https://doi.org/10.1109/87.370698
23 https://doi.org/10.1109/cdc.1993.325642
24 https://doi.org/10.1109/tac.2007.892389
25 https://doi.org/10.1109/tcst.2005.863660
26 https://doi.org/10.1109/tcst.2012.2229465
27 https://doi.org/10.1109/tfuzz.2013.2241769
28 https://doi.org/10.1109/tie.2009.2023098
29 https://doi.org/10.1109/tmech.2015.2492682
30 https://doi.org/10.1109/tvt.2005.853479
31 https://doi.org/10.1109/tvt.2011.2125806
32 https://doi.org/10.1109/tvt.2015.2413451
33 https://doi.org/10.1109/vss.2014.6881160
34 https://doi.org/10.1115/1.1317231
35 https://doi.org/10.1155/2015/896859
36 https://doi.org/10.1201/9781420065619
37 https://doi.org/10.4316/aece.2013.01006
38 schema:datePublished 2018-03
39 schema:datePublishedReg 2018-03-01
40 schema:description An extremum seeking scheme is developed for maximizing the longitudinal tire forces of the road vehicles during emergency braking situations. If the road condition is known, then a conventional braking controller could generate required braking moment to track the slip set point which belongs to that road condition. However, estimating the road condition is not an easy task and it brings additional computation effort. Rather than that, a self optimization algorithm is presented in this paper without relying on road condition estimation. The developed controller searches optimum operation point for getting maximum friction force. Computer simulations show the effectiveness of the self optimization routine. To validate the real time applicability of the algorithm, an electromechanical braking test system is used for the experiments. Due to the limited measurements from the experimental system, force and moment observers are designed to calculate necessary control inputs for maximizing the friction potential, i.e. the braking force. Via the experimental study, it has been shown that the developed self optimizing controller is fast, accurate, and operable on a real braking system.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N21e15273ad0e4fd9b426f64924684b11
45 N2d1f3ca214aa4161996b09839014d8f5
46 sg:journal.1136728
47 schema:name An emergency braking controller based on extremum seeking with experimental implementation
48 schema:pagination 270-283
49 schema:productId Na6353a2e41dd46f88f587185a22c1f6a
50 Nb8156f9aee7746429f55620fd08f9e99
51 Ne2c15dce6a8f44849894581215207760
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035346898
53 https://doi.org/10.1007/s40435-016-0286-2
54 schema:sdDatePublished 2019-04-11T10:32
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nd64bb025e78a49569320c38372245b1a
57 schema:url https://link.springer.com/10.1007%2Fs40435-016-0286-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N21e15273ad0e4fd9b426f64924684b11 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N2d1f3ca214aa4161996b09839014d8f5 schema:volumeNumber 6
64 rdf:type schema:PublicationVolume
65 Na6353a2e41dd46f88f587185a22c1f6a schema:name doi
66 schema:value 10.1007/s40435-016-0286-2
67 rdf:type schema:PropertyValue
68 Nb8156f9aee7746429f55620fd08f9e99 schema:name dimensions_id
69 schema:value pub.1035346898
70 rdf:type schema:PropertyValue
71 Nbaf1fc13998c487c82bbc9005f36b735 rdf:first sg:person.010203530637.40
72 rdf:rest Nce3cd93e3ee34745b3b766004d9f8f8f
73 Nce3cd93e3ee34745b3b766004d9f8f8f rdf:first sg:person.012143777553.51
74 rdf:rest rdf:nil
75 Nd64bb025e78a49569320c38372245b1a schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Ne2c15dce6a8f44849894581215207760 schema:name readcube_id
78 schema:value a860be02259b53c47801546b34b46fddced9483e9a3aa35b57f18b4d0dd190f7
79 rdf:type schema:PropertyValue
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
84 schema:name Applied Mathematics
85 rdf:type schema:DefinedTerm
86 sg:journal.1136728 schema:issn 2195-268X
87 2195-2698
88 schema:name International Journal of Dynamics and Control
89 rdf:type schema:Periodical
90 sg:person.010203530637.40 schema:affiliation https://www.grid.ac/institutes/grid.58192.37
91 schema:familyName Dinçmen
92 schema:givenName Erkin
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203530637.40
94 rdf:type schema:Person
95 sg:person.012143777553.51 schema:affiliation https://www.grid.ac/institutes/grid.10516.33
96 schema:familyName Altınel
97 schema:givenName Tunç
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012143777553.51
99 rdf:type schema:Person
100 sg:pub.10.1007/s12555-014-0466-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025310331
101 https://doi.org/10.1007/s12555-014-0466-9
102 rdf:type schema:CreativeWork
103 https://app.dimensions.ai/details/publication/pub.1109725938 schema:CreativeWork
104 https://doi.org/10.1002/acs.933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006078405
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0005-1098(74)90053-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031298969
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.automatica.2005.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005773700
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.automatica.2007.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011978612
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.automatica.2007.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046827855
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.conengprac.2010.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026547071
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.engappai.2010.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042983361
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.trc.2008.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023651596
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.trc.2011.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006583563
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0005-1098(03)00105-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034931306
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0005-1098(99)00183-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019625361
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0967-0661(00)00047-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000658114
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/00207720701409637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684391
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/00423114.2011.577224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034730346
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/00423114.2012.690041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051060419
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/00423114.2015.1026831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051532480
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/87.370698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061241530
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cdc.1993.325642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086261279
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tac.2007.892389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061476436
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tcst.2005.863660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061572284
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tcst.2012.2229465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061573396
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tfuzz.2013.2241769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606668
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tie.2009.2023098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623872
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tmech.2015.2492682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061693633
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tvt.2005.853479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061818654
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tvt.2011.2125806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061820753
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tvt.2015.2413451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061822940
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/vss.2014.6881160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095239527
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1115/1.1317231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062067789
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1155/2015/896859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025423180
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1201/9781420065619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725938
165 rdf:type schema:CreativeWork
166 https://doi.org/10.4316/aece.2013.01006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072511604
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.10516.33 schema:alternateName Istanbul Technical University
169 schema:name Department of Mechanical Engineering, Istanbul Technical University, Gümüşsuyu, Istanbul, Turkey
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.58192.37 schema:alternateName Işık University
172 schema:name Department of Mechanical Engineering, Işık University, 34980, Şile, Istanbul, Turkey
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...