Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ganesh R. Chate, G. C. Manjunath Patel, S. N. Bharath Bhushan, Mahesh B. Parappagoudar, Anand S. Deshpande

ABSTRACT

Scarcity of high-cost silica sand, casting defect such as hot tear in hard moulds and casting ejection problem after solidification are the key industrial problems. Sawdust is a by-product of wood working industries, and economic disposal of sawdust in these industries is a growing concern to the wood industries. The present work utilized sawdust as an additive in preparing mould cavity for casting applications. Sand mould properties such as compression strength (CS), mould hardness (MH), gas evolution (GE), permeability (P) and collapsibility (CP) will have good impact on the quality of castings. The effect of variables, namely quantity of resin, hardener, sawdust and setting time, on no-bake furan-bonded sand system is studied in the present research work. The experiments are conducted as per design of experiments, and the data are used to investigate the effect of individual and combined parametric contributions towards responses and establish nonlinear input–output relationships. All nonlinear regression models (that is, input–output relationships) are found to be statistically adequate. The input–output relations are analysed and presented for each of the response with the help of surface plots. Further, the models are found to predict the output close to the experiment (target value). The grand average value in predicting responses is found to be equal to 5.03%. The multi-objective optimization of responses with conflicting nature (minimize: GE and CP; maximize: CS, P and MH) is carried out with the help of global fitness function values determined using genetic algorithm, particle swarm optimization, teacher–learner-based optimization and JAYA algorithms. The optimized values of process parameters that resulted in best set of responses are found to be equal to 60 min, 2.01%, 0.6% and 0.93% for setting time, quantity of resin, hardener and sawdust, respectively. Two automobile coupling parts are cast by pouring molten aluminium into the mould cavity with the optimized and non-optimum sand mould conditions. Further, these two cast components are tested for their quality characteristics, such as surface finish, yield strength, hardness, density and secondary dendrite arm spacing. It has been observed that the quality characteristics of castings produced in mould with optimized parameters are found to be much better. More... »

PAGES

183

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40430-019-1684-0

DOI

http://dx.doi.org/10.1007/s40430-019-1684-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112895348


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Industrial and Production Engineering, KLS Gogte Institute of Technology, Belagavi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chate", 
        "givenName": "Ganesh R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mechanical Engineering, PES Institute of Technology and Management, Shivamogga, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "G. C. Manjunath", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Computer Science and Engineering, Sahyadri College of Engineering and Management, Mangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhushan", 
        "givenName": "S. N. Bharath", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Goa University", 
          "id": "https://www.grid.ac/institutes/grid.411722.3", 
          "name": [
            "Department of Mechanical Engineering, Padre Conceicao College of Engineering, Verna, Goa, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parappagoudar", 
        "givenName": "Mahesh B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Industrial and Production Engineering, KLS Gogte Institute of Technology, Belagavi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deshpande", 
        "givenName": "Anand S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00170-011-3365-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739155", 
          "https://doi.org/10.1007/s00170-011-3365-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2009.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004021870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11270-015-2707-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005424769", 
          "https://doi.org/10.1007/s11270-015-2707-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11270-015-2707-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005424769", 
          "https://doi.org/10.1007/s11270-015-2707-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7777/jkfs.2014.34.3.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005426082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2012.03.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008323960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2016.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009653035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-81-322-2731-1_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011679010", 
          "https://doi.org/10.1007/978-81-322-2731-1_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2012.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011944863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jmsp-2012-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012308868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/ijsir.2013070103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012731014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cad.2010.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012871994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/136404607x184952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016538686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013207000046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017191729", 
          "https://doi.org/10.1023/a:1013207000046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31880-4_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018925932", 
          "https://doi.org/10.1007/978-3-540-31880-4_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31880-4_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018925932", 
          "https://doi.org/10.1007/978-3-540-31880-4_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1530-9290.2010.00233.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020684859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025106274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2014.04.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031094909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10426914.2014.994779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033237164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/ijsir.2016010103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034442250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2008.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035059171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2011.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036055819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0672-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047311577", 
          "https://doi.org/10.1007/s00170-006-0672-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0672-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047311577", 
          "https://doi.org/10.1007/s00170-006-0672-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-1317(89)90030-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050218951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-1317(89)90030-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050218951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2009.03.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050846875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2012.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051757330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2012.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051757330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5267/j.ijiec.2015.8.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072734304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7494/mafe.2012.38.1.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073759877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954408917728636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091444789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954408917728636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091444789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40962-018-0209-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100828148", 
          "https://doi.org/10.1007/s40962-018-0209-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-78922-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104502197", 
          "https://doi.org/10.1007/978-3-319-78922-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Scarcity of high-cost silica sand, casting defect such as hot tear in hard moulds and casting ejection problem after solidification are the key industrial problems. Sawdust is a by-product of wood working industries, and economic disposal of sawdust in these industries is a growing concern to the wood industries. The present work utilized sawdust as an additive in preparing mould cavity for casting applications. Sand mould properties such as compression strength (CS), mould hardness (MH), gas evolution (GE), permeability (P) and collapsibility (CP) will have good impact on the quality of castings. The effect of variables, namely quantity of resin, hardener, sawdust and setting time, on no-bake furan-bonded sand system is studied in the present research work. The experiments are conducted as per design of experiments, and the data are used to investigate the effect of individual and combined parametric contributions towards responses and establish nonlinear input\u2013output relationships. All nonlinear regression models (that is, input\u2013output relationships) are found to be statistically adequate. The input\u2013output relations are analysed and presented for each of the response with the help of surface plots. Further, the models are found to predict the output close to the experiment (target value). The grand average value in predicting responses is found to be equal to 5.03%. The multi-objective optimization of responses with conflicting nature (minimize: GE and CP; maximize: CS, P and MH) is carried out with the help of global fitness function values determined using genetic algorithm, particle swarm optimization, teacher\u2013learner-based optimization and JAYA algorithms. The optimized values of process parameters that resulted in best set of responses are found to be equal to 60 min, 2.01%, 0.6% and 0.93% for setting time, quantity of resin, hardener and sawdust, respectively. Two automobile coupling parts are cast by pouring molten aluminium into the mould cavity with the optimized and non-optimum sand mould conditions. Further, these two cast components are tested for their quality characteristics, such as surface finish, yield strength, hardness, density and secondary dendrite arm spacing. It has been observed that the quality characteristics of castings produced in mould with optimized parameters are found to be much better.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40430-019-1684-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136734", 
        "issn": [
          "1678-5878", 
          "1806-3691"
        ], 
        "name": "Journal of the Brazilian Society of Mechanical Sciences and Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive", 
    "pagination": "183", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "00580fb3c3fcc666f768312bcf09b49ec4500f8bf92a7b117f9ba98fb04da136"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40430-019-1684-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112895348"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40430-019-1684-0", 
      "https://app.dimensions.ai/details/publication/pub.1112895348"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40430-019-1684-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40430-019-1684-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40430-019-1684-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40430-019-1684-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40430-019-1684-0'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40430-019-1684-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1a0808618fe449b09b7313d668a19da6
4 schema:citation sg:pub.10.1007/978-3-319-78922-4
5 sg:pub.10.1007/978-3-540-31880-4_35
6 sg:pub.10.1007/978-81-322-2731-1_46
7 sg:pub.10.1007/s00170-006-0672-6
8 sg:pub.10.1007/s00170-011-3365-8
9 sg:pub.10.1007/s11270-015-2707-9
10 sg:pub.10.1007/s40962-018-0209-4
11 sg:pub.10.1023/a:1008202821328
12 sg:pub.10.1023/a:1013207000046
13 https://doi.org/10.1016/0169-1317(89)90030-6
14 https://doi.org/10.1016/j.amc.2009.03.090
15 https://doi.org/10.1016/j.apm.2009.03.021
16 https://doi.org/10.1016/j.apm.2012.03.043
17 https://doi.org/10.1016/j.apm.2014.04.036
18 https://doi.org/10.1016/j.apm.2016.02.029
19 https://doi.org/10.1016/j.cad.2010.12.015
20 https://doi.org/10.1016/j.engappai.2011.03.009
21 https://doi.org/10.1016/j.engappai.2012.06.007
22 https://doi.org/10.1016/j.epsr.2008.10.004
23 https://doi.org/10.1016/j.ijmachtools.2006.08.001
24 https://doi.org/10.1016/j.ins.2012.03.005
25 https://doi.org/10.1080/10426914.2014.994779
26 https://doi.org/10.1109/icnn.1995.488968
27 https://doi.org/10.1111/j.1530-9290.2010.00233.x
28 https://doi.org/10.1177/0954408917728636
29 https://doi.org/10.1179/136404607x184952
30 https://doi.org/10.1515/jmsp-2012-0003
31 https://doi.org/10.4018/ijsir.2013070103
32 https://doi.org/10.4018/ijsir.2016010103
33 https://doi.org/10.5267/j.ijiec.2015.8.004
34 https://doi.org/10.7494/mafe.2012.38.1.73
35 https://doi.org/10.7777/jkfs.2014.34.3.107
36 schema:datePublished 2019-04
37 schema:datePublishedReg 2019-04-01
38 schema:description Scarcity of high-cost silica sand, casting defect such as hot tear in hard moulds and casting ejection problem after solidification are the key industrial problems. Sawdust is a by-product of wood working industries, and economic disposal of sawdust in these industries is a growing concern to the wood industries. The present work utilized sawdust as an additive in preparing mould cavity for casting applications. Sand mould properties such as compression strength (CS), mould hardness (MH), gas evolution (GE), permeability (P) and collapsibility (CP) will have good impact on the quality of castings. The effect of variables, namely quantity of resin, hardener, sawdust and setting time, on no-bake furan-bonded sand system is studied in the present research work. The experiments are conducted as per design of experiments, and the data are used to investigate the effect of individual and combined parametric contributions towards responses and establish nonlinear input–output relationships. All nonlinear regression models (that is, input–output relationships) are found to be statistically adequate. The input–output relations are analysed and presented for each of the response with the help of surface plots. Further, the models are found to predict the output close to the experiment (target value). The grand average value in predicting responses is found to be equal to 5.03%. The multi-objective optimization of responses with conflicting nature (minimize: GE and CP; maximize: CS, P and MH) is carried out with the help of global fitness function values determined using genetic algorithm, particle swarm optimization, teacher–learner-based optimization and JAYA algorithms. The optimized values of process parameters that resulted in best set of responses are found to be equal to 60 min, 2.01%, 0.6% and 0.93% for setting time, quantity of resin, hardener and sawdust, respectively. Two automobile coupling parts are cast by pouring molten aluminium into the mould cavity with the optimized and non-optimum sand mould conditions. Further, these two cast components are tested for their quality characteristics, such as surface finish, yield strength, hardness, density and secondary dendrite arm spacing. It has been observed that the quality characteristics of castings produced in mould with optimized parameters are found to be much better.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N5b14794793e841fa8faa945404ab6f87
43 Nfc1400a96335481c8568a4fe625bec64
44 sg:journal.1136734
45 schema:name Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive
46 schema:pagination 183
47 schema:productId Nb372a9988b164da9b7c0b59c551cddce
48 Ncaa2e77d43a74ff8b4a06879f81d70e9
49 Nd9094b9ed188458ca0168758a660fc99
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112895348
51 https://doi.org/10.1007/s40430-019-1684-0
52 schema:sdDatePublished 2019-04-11T12:36
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nd7f0e28c239c453a8abbc342cd2511c2
55 schema:url https://link.springer.com/10.1007%2Fs40430-019-1684-0
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N076efbe11aa440c8adc8c71dd47ec3b6 rdf:first N48b6a61838e242dfad97e7f075de5f47
60 rdf:rest N5847d78beba743378426e02608ead218
61 N17acafe578f14c2ab83ff6b36599866d schema:affiliation https://www.grid.ac/institutes/grid.444321.4
62 schema:familyName Bhushan
63 schema:givenName S. N. Bharath
64 rdf:type schema:Person
65 N1a0808618fe449b09b7313d668a19da6 rdf:first N86eba8584fd34dc3916a6cba88fc77a2
66 rdf:rest N076efbe11aa440c8adc8c71dd47ec3b6
67 N48b6a61838e242dfad97e7f075de5f47 schema:affiliation N8e37816e507b427fb4bcbe8e2bda48c6
68 schema:familyName Patel
69 schema:givenName G. C. Manjunath
70 rdf:type schema:Person
71 N5847d78beba743378426e02608ead218 rdf:first N17acafe578f14c2ab83ff6b36599866d
72 rdf:rest N5d5288ffe6524cc2bd6a210c28e6afbe
73 N5b14794793e841fa8faa945404ab6f87 schema:issueNumber 4
74 rdf:type schema:PublicationIssue
75 N5d5288ffe6524cc2bd6a210c28e6afbe rdf:first N828c66070b31478080853c951e65d73b
76 rdf:rest Nf2c1dfda3e22412a8260b1478d405bdb
77 N828c66070b31478080853c951e65d73b schema:affiliation https://www.grid.ac/institutes/grid.411722.3
78 schema:familyName Parappagoudar
79 schema:givenName Mahesh B.
80 rdf:type schema:Person
81 N86eba8584fd34dc3916a6cba88fc77a2 schema:affiliation https://www.grid.ac/institutes/grid.444321.4
82 schema:familyName Chate
83 schema:givenName Ganesh R.
84 rdf:type schema:Person
85 N8e37816e507b427fb4bcbe8e2bda48c6 schema:name Department of Mechanical Engineering, PES Institute of Technology and Management, Shivamogga, India
86 rdf:type schema:Organization
87 Na536055443ca4cc0b06814d757f089de schema:affiliation https://www.grid.ac/institutes/grid.444321.4
88 schema:familyName Deshpande
89 schema:givenName Anand S.
90 rdf:type schema:Person
91 Nb372a9988b164da9b7c0b59c551cddce schema:name doi
92 schema:value 10.1007/s40430-019-1684-0
93 rdf:type schema:PropertyValue
94 Ncaa2e77d43a74ff8b4a06879f81d70e9 schema:name dimensions_id
95 schema:value pub.1112895348
96 rdf:type schema:PropertyValue
97 Nd7f0e28c239c453a8abbc342cd2511c2 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nd9094b9ed188458ca0168758a660fc99 schema:name readcube_id
100 schema:value 00580fb3c3fcc666f768312bcf09b49ec4500f8bf92a7b117f9ba98fb04da136
101 rdf:type schema:PropertyValue
102 Nf2c1dfda3e22412a8260b1478d405bdb rdf:first Na536055443ca4cc0b06814d757f089de
103 rdf:rest rdf:nil
104 Nfc1400a96335481c8568a4fe625bec64 schema:volumeNumber 41
105 rdf:type schema:PublicationVolume
106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
107 schema:name Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
110 schema:name Materials Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1136734 schema:issn 1678-5878
113 1806-3691
114 schema:name Journal of the Brazilian Society of Mechanical Sciences and Engineering
115 rdf:type schema:Periodical
116 sg:pub.10.1007/978-3-319-78922-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104502197
117 https://doi.org/10.1007/978-3-319-78922-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-540-31880-4_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018925932
120 https://doi.org/10.1007/978-3-540-31880-4_35
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-81-322-2731-1_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011679010
123 https://doi.org/10.1007/978-81-322-2731-1_46
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00170-006-0672-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047311577
126 https://doi.org/10.1007/s00170-006-0672-6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00170-011-3365-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000739155
129 https://doi.org/10.1007/s00170-011-3365-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11270-015-2707-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005424769
132 https://doi.org/10.1007/s11270-015-2707-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s40962-018-0209-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100828148
135 https://doi.org/10.1007/s40962-018-0209-4
136 rdf:type schema:CreativeWork
137 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
138 https://doi.org/10.1023/a:1008202821328
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/a:1013207000046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017191729
141 https://doi.org/10.1023/a:1013207000046
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0169-1317(89)90030-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050218951
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.amc.2009.03.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846875
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.apm.2009.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004021870
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.apm.2012.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008323960
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.apm.2014.04.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031094909
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.apm.2016.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009653035
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.cad.2010.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012871994
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.engappai.2011.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036055819
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.engappai.2012.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011944863
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.epsr.2008.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035059171
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijmachtools.2006.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025106274
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ins.2012.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051757330
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/10426914.2014.994779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237164
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1111/j.1530-9290.2010.00233.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020684859
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1177/0954408917728636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091444789
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1179/136404607x184952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016538686
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1515/jmsp-2012-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012308868
178 rdf:type schema:CreativeWork
179 https://doi.org/10.4018/ijsir.2013070103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012731014
180 rdf:type schema:CreativeWork
181 https://doi.org/10.4018/ijsir.2016010103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034442250
182 rdf:type schema:CreativeWork
183 https://doi.org/10.5267/j.ijiec.2015.8.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072734304
184 rdf:type schema:CreativeWork
185 https://doi.org/10.7494/mafe.2012.38.1.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073759877
186 rdf:type schema:CreativeWork
187 https://doi.org/10.7777/jkfs.2014.34.3.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005426082
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.411722.3 schema:alternateName Goa University
190 schema:name Department of Mechanical Engineering, Padre Conceicao College of Engineering, Verna, Goa, India
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.444321.4 schema:alternateName Visvesvaraya Technological University
193 schema:name Department of Computer Science and Engineering, Sahyadri College of Engineering and Management, Mangalore, India
194 Department of Industrial and Production Engineering, KLS Gogte Institute of Technology, Belagavi, India
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...