On model for three-dimensional Carreau fluid flow with Cattaneo–Christov double diffusion and variable conductivity: a numerical approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-24

AUTHORS

M. Irfan, M. Khan, W. A. Khan

ABSTRACT

The present article investigates the steady 3D flow of a Carreau liquid influenced by bidirectional stretching surface. In the presence of Cattaneo–Christov double diffusion with temperature-dependent thermal conductivity, the heat and mass transfer mechanisms have been scrutinized. The alteration of nonlinear PDEs to nonlinear ODEs is equipped via apposite conversions and then resolved numerically by means of bvp4c scheme. The graphical assessment is exposed to portray the essential features of somatic parameters on Carreau liquid temperature and concentration distributions. This study indicates that the variable conductivity parameter enhances the liquid temperature, while the thermal relaxation time parameter and Prandtl number are diminishing functions of temperature field. Furthermore, our results illustrate that the concentration relaxation time parameter and Schmidt number diminish the concentration field. The assertion of present exploration is asserted by emergent assessment with former outcomes vacant in prose, which sets a benchmark for execution of computational methodology. Moreover, graphical assessment is also vacant for two altered techniques, namely analytical (HAM) and numerical (bvp4c). More... »

PAGES

577

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40430-018-1498-5

DOI

http://dx.doi.org/10.1007/s40430-018-1498-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110176999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Irfan", 
        "givenName": "M.", 
        "id": "sg:person.010505271200.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010505271200.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "M.", 
        "id": "sg:person.016031744323.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031744323.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, Hazara University, 21300, Mansehra, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440530.6", 
          "name": [
            "Department of Mathematics and Statistics, Hazara University, 21300, Mansehra, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "W. A.", 
        "id": "sg:person.07471022463.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471022463.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12648-017-1156-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100078022", 
          "https://doi.org/10.1007/s12648-017-1156-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-017-2687-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090741996", 
          "https://doi.org/10.1007/s13369-017-2687-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10483-016-2088-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045092184", 
          "https://doi.org/10.1007/s10483-016-2088-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11979-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103462330", 
          "https://doi.org/10.1140/epjp/i2018-11979-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12043-018-1579-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104892439", 
          "https://doi.org/10.1007/s12043-018-1579-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-24", 
    "datePublishedReg": "2018-11-24", 
    "description": "The present article investigates the steady 3D flow of a Carreau liquid influenced by bidirectional stretching surface. In the presence of Cattaneo\u2013Christov double diffusion with temperature-dependent thermal conductivity, the heat and mass transfer mechanisms have been scrutinized. The alteration of nonlinear PDEs to nonlinear ODEs is equipped via apposite conversions and then resolved numerically by means of bvp4c scheme. The graphical assessment is exposed to portray the essential features of somatic parameters on Carreau liquid temperature and concentration distributions. This study indicates that the variable conductivity parameter enhances the liquid temperature, while the thermal relaxation time parameter and Prandtl number are diminishing functions of temperature field. Furthermore, our results illustrate that the concentration relaxation time parameter and Schmidt number diminish the concentration field. The assertion of present exploration is asserted by emergent assessment with former outcomes vacant in prose, which sets a benchmark for execution of computational methodology. Moreover, graphical assessment is also vacant for two altered techniques, namely analytical (HAM) and numerical (bvp4c).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40430-018-1498-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136734", 
        "issn": [
          "1678-5878", 
          "1806-3691"
        ], 
        "name": "Journal of the Brazilian Society of Mechanical Sciences and Engineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "Cattaneo-Christov double diffusion", 
      "liquid temperature", 
      "temperature-dependent thermal conductivity", 
      "relaxation time parameter", 
      "steady 3D flow", 
      "thermal relaxation time parameter", 
      "bidirectional stretching surface", 
      "variable conductivity parameter", 
      "mass transfer mechanisms", 
      "Carreau fluid flow", 
      "thermal conductivity", 
      "Carreau liquid", 
      "temperature field", 
      "stretching surface", 
      "Prandtl number", 
      "concentration fields", 
      "Schmidt number", 
      "fluid flow", 
      "variable conductivity", 
      "apposite conversions", 
      "conductivity parameters", 
      "concentration distribution", 
      "numerical approach", 
      "double diffusion", 
      "transfer mechanism", 
      "conductivity", 
      "time parameters", 
      "computational methodology", 
      "flow", 
      "altered technique", 
      "temperature", 
      "nonlinear ODEs", 
      "diffusion", 
      "parameters", 
      "heat", 
      "present exploration", 
      "liquid", 
      "field", 
      "surface", 
      "essential features", 
      "nonlinear PDEs", 
      "technique", 
      "distribution", 
      "methodology", 
      "model", 
      "conversion", 
      "present article", 
      "scheme", 
      "results", 
      "means", 
      "assessment", 
      "former outcome", 
      "approach", 
      "PDE", 
      "graphical assessment", 
      "ODEs", 
      "number", 
      "features", 
      "benchmarks", 
      "mechanism", 
      "presence", 
      "study", 
      "function", 
      "exploration", 
      "somatic parameters", 
      "article", 
      "emergent assessment", 
      "execution", 
      "alterations", 
      "assertion", 
      "outcomes", 
      "prose", 
      "Carreau liquid temperature", 
      "concentration relaxation time parameter", 
      "three-dimensional Carreau fluid flow"
    ], 
    "name": "On model for three-dimensional Carreau fluid flow with Cattaneo\u2013Christov double diffusion and variable conductivity: a numerical approach", 
    "pagination": "577", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110176999"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40430-018-1498-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40430-018-1498-5", 
      "https://app.dimensions.ai/details/publication/pub.1110176999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_762.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40430-018-1498-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40430-018-1498-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40430-018-1498-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40430-018-1498-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40430-018-1498-5'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      104 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40430-018-1498-5 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N08874d7975f9445ebb37afec8bb5fe0d
4 schema:citation sg:pub.10.1007/s10483-016-2088-6
5 sg:pub.10.1007/s12043-018-1579-0
6 sg:pub.10.1007/s12648-017-1156-2
7 sg:pub.10.1007/s13369-017-2687-8
8 sg:pub.10.1140/epjp/i2018-11979-x
9 schema:datePublished 2018-11-24
10 schema:datePublishedReg 2018-11-24
11 schema:description The present article investigates the steady 3D flow of a Carreau liquid influenced by bidirectional stretching surface. In the presence of Cattaneo–Christov double diffusion with temperature-dependent thermal conductivity, the heat and mass transfer mechanisms have been scrutinized. The alteration of nonlinear PDEs to nonlinear ODEs is equipped via apposite conversions and then resolved numerically by means of bvp4c scheme. The graphical assessment is exposed to portray the essential features of somatic parameters on Carreau liquid temperature and concentration distributions. This study indicates that the variable conductivity parameter enhances the liquid temperature, while the thermal relaxation time parameter and Prandtl number are diminishing functions of temperature field. Furthermore, our results illustrate that the concentration relaxation time parameter and Schmidt number diminish the concentration field. The assertion of present exploration is asserted by emergent assessment with former outcomes vacant in prose, which sets a benchmark for execution of computational methodology. Moreover, graphical assessment is also vacant for two altered techniques, namely analytical (HAM) and numerical (bvp4c).
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N0600e59854974991b2445468719ecf1a
16 Na15d411840ad4c3da31ac5330b455e54
17 sg:journal.1136734
18 schema:keywords Carreau fluid flow
19 Carreau liquid
20 Carreau liquid temperature
21 Cattaneo-Christov double diffusion
22 ODEs
23 PDE
24 Prandtl number
25 Schmidt number
26 alterations
27 altered technique
28 apposite conversions
29 approach
30 article
31 assertion
32 assessment
33 benchmarks
34 bidirectional stretching surface
35 computational methodology
36 concentration distribution
37 concentration fields
38 concentration relaxation time parameter
39 conductivity
40 conductivity parameters
41 conversion
42 diffusion
43 distribution
44 double diffusion
45 emergent assessment
46 essential features
47 execution
48 exploration
49 features
50 field
51 flow
52 fluid flow
53 former outcome
54 function
55 graphical assessment
56 heat
57 liquid
58 liquid temperature
59 mass transfer mechanisms
60 means
61 mechanism
62 methodology
63 model
64 nonlinear ODEs
65 nonlinear PDEs
66 number
67 numerical approach
68 outcomes
69 parameters
70 presence
71 present article
72 present exploration
73 prose
74 relaxation time parameter
75 results
76 scheme
77 somatic parameters
78 steady 3D flow
79 stretching surface
80 study
81 surface
82 technique
83 temperature
84 temperature field
85 temperature-dependent thermal conductivity
86 thermal conductivity
87 thermal relaxation time parameter
88 three-dimensional Carreau fluid flow
89 time parameters
90 transfer mechanism
91 variable conductivity
92 variable conductivity parameter
93 schema:name On model for three-dimensional Carreau fluid flow with Cattaneo–Christov double diffusion and variable conductivity: a numerical approach
94 schema:pagination 577
95 schema:productId N88fbd50f3e1e44609e39b3890859d8e2
96 Nc39ff941251a4d59b5ef92836b7456aa
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110176999
98 https://doi.org/10.1007/s40430-018-1498-5
99 schema:sdDatePublished 2021-12-01T19:42
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N1c35b8bb72a2432bb93fe75954d641f9
102 schema:url https://doi.org/10.1007/s40430-018-1498-5
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N0600e59854974991b2445468719ecf1a schema:issueNumber 12
107 rdf:type schema:PublicationIssue
108 N08874d7975f9445ebb37afec8bb5fe0d rdf:first sg:person.010505271200.36
109 rdf:rest Nefc067cbc4474974a48401ca3a120fe4
110 N1c35b8bb72a2432bb93fe75954d641f9 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N88fbd50f3e1e44609e39b3890859d8e2 schema:name dimensions_id
113 schema:value pub.1110176999
114 rdf:type schema:PropertyValue
115 N9594420fddd84e139b26866cc3f83ace rdf:first sg:person.07471022463.23
116 rdf:rest rdf:nil
117 Na15d411840ad4c3da31ac5330b455e54 schema:volumeNumber 40
118 rdf:type schema:PublicationVolume
119 Nc39ff941251a4d59b5ef92836b7456aa schema:name doi
120 schema:value 10.1007/s40430-018-1498-5
121 rdf:type schema:PropertyValue
122 Nefc067cbc4474974a48401ca3a120fe4 rdf:first sg:person.016031744323.06
123 rdf:rest N9594420fddd84e139b26866cc3f83ace
124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
125 schema:name Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
128 schema:name Interdisciplinary Engineering
129 rdf:type schema:DefinedTerm
130 sg:journal.1136734 schema:issn 1678-5878
131 1806-3691
132 schema:name Journal of the Brazilian Society of Mechanical Sciences and Engineering
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.010505271200.36 schema:affiliation grid-institutes:grid.412621.2
136 schema:familyName Irfan
137 schema:givenName M.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010505271200.36
139 rdf:type schema:Person
140 sg:person.016031744323.06 schema:affiliation grid-institutes:grid.412621.2
141 schema:familyName Khan
142 schema:givenName M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031744323.06
144 rdf:type schema:Person
145 sg:person.07471022463.23 schema:affiliation grid-institutes:grid.440530.6
146 schema:familyName Khan
147 schema:givenName W. A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471022463.23
149 rdf:type schema:Person
150 sg:pub.10.1007/s10483-016-2088-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045092184
151 https://doi.org/10.1007/s10483-016-2088-6
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s12043-018-1579-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104892439
154 https://doi.org/10.1007/s12043-018-1579-0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s12648-017-1156-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100078022
157 https://doi.org/10.1007/s12648-017-1156-2
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s13369-017-2687-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090741996
160 https://doi.org/10.1007/s13369-017-2687-8
161 rdf:type schema:CreativeWork
162 sg:pub.10.1140/epjp/i2018-11979-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103462330
163 https://doi.org/10.1140/epjp/i2018-11979-x
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.412621.2 schema:alternateName Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan
166 schema:name Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan
167 rdf:type schema:Organization
168 grid-institutes:grid.440530.6 schema:alternateName Department of Mathematics and Statistics, Hazara University, 21300, Mansehra, Pakistan
169 schema:name Department of Mathematics and Statistics, Hazara University, 21300, Mansehra, Pakistan
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...